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Abstract—Artificial intelligence (AI) and machine learning 

(ML) have emerged as powerful tools in various industries, 

including aerospace. The application of AI and ML 
techniques in the aerospace sector has led to significant 

advancements in areas such as aircraft design, flight control, 

autonomous systems, and predictive maintenance. In aircraft 

design, AI and ML algorithms can assist engineers in 

optimizing the aerodynamic shape, reducing weight, and 

improving fuel efficiency. By analyzing vast amounts of 

data and simulating different scenarios, these techniques 

enable faster and more accurate design iterations, leading to 

the development of more efficient and advanced aircraft. 

Flight control systems also benefit from AI and ML. These 

technologies enable real-time data processing, allowing for 
precise control and decision-making during flight. By 

continuously analyzing sensor data and aircraft 

performance, AI algorithms can detect anomalies, predict 

potential failures, and initiate appropriate corrective actions, 

enhancing safety and reliability. 

 
Keywords— MACHINE LEARNING-BASED PREDICTION METHOD: 

GMM-BASED TRAJECTORY, LSTM-BASED TRAJECTORY, ESTIMATION-
BASED TRAJECTORY. 

 I. Introduction  

The integration of Artificial Intelligence (AI) and Machine 

Learning (ML) in aerospace applications has revolutionized 

the industry. AI and ML enable advancements in aircraft 

design, manufacturing, operations, and maintenance, 

enhancing safety, efficiency, and performance while 

reducing costs and environmental impact.  

 

These technologies analyze vast amounts of data, provide 

real-time insights, and enable proactive decision-making. 
The development of predictive and health monitoring for 

space systems is one of the essential issues of aerospace 

engineering, which increases its efficiency, reliability, and 

safety based on the status of the resources and mission 

operations [1], [2]. Aerospace applications of AI and ML 

include flight control systems, autonomous navigation, 

predictive maintenance, aerodynamics optimization, and 

mission planning.  

They enhance aircraft safety, optimize design and 

performance, enable autonomous flight systems, and 

facilitate predictive maintenance. The integration of AI and 
ML in aerospace represents a new era of intelligent, 

efficient, and sustainable aviation. In the aerospace industry, 

AI refers to the simulation of human intelligence in 

machines that can analyze and interpret vast amounts of 

data, make decisions, and perform tasks with minimal 

human intervention. ML, a subset of AI, focuses on the 

development of algorithms and models that enable 

computers to learn and improve from data inputs without 

explicit programming.  

 

Aerospace applications of AI and ML encompass a wide 
range of areas, including flight control systems, autonomous 

navigation, predictive maintenance, anomaly detection, 

optimization of aerodynamics, and mission planning. These 

technologies can process immense amounts of data from 

sensors, flight data recorders, weather reports, and other 

sources, providing real-time insights and enabling proactive 

decision-making. One of the significant benefits of 

incorporating AI and ML into aerospace is the potential to 

enhance aircraft safety. 

 

 Intelligent systems can analyze data in real-time to detect 

anomalies, predict failures, and issue alerts, allowing for 
preventive measures and reducing the risk of accidents. 

Furthermore, AI and ML algorithms can aid in identifying 

patterns in complex flight data, leading to improved pilot 

training programs and decision support systems. Aerospace 

manufacturers also leverage AI and ML techniques to 

optimize aircraft design and performance. Through 

advanced simulations and data analysis, engineers can 

improve aerodynamic efficiency, reduce fuel consumption, 

and enhance overall aircraft performance.  

 

Therefore, data-driven methods have been widely developed 
to address The associate editor coordinating the review of 

this manuscript and approving it for publication was Halil 

Ersin Soken . all aerospace applications’ health prognostic 

and monitoring operations [3], [4].  
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These technologies facilitate the development of innovative 

designs that push the boundaries of efficiency, durability, 

and environmental sustainability.  

 

Additionally, AI and ML play a crucial role in the field of 
autonomous flight systems. Unmanned aerial vehicles 

(UAVs) and drones are rapidly evolving, with AI-powered 

algorithms enabling autonomous navigation, collision 

avoidance, and adaptive decision-making.  

 

 

These advancements pave the way for applications such as 

package delivery, aerial inspections, and search and rescue 

operations. THE expansion of the aerospace industry has led 

to an increase in the number of aging aircraft which are still 

in service [5].  
 

Novel composite materials have been developed, which 

possess high strength-to-weight ratio and are used in 

aircraft, space vehicles and in other industrial applications. 

These materials are usually exposed to high loads and 

climatic factors progressively causing dangerous defects. 

Even the smallest flaws in the structure can lead to 

catastrophic failures.  

 

To ensure safety and airworthiness, it is necessary to employ 

new and innovative structural health assessment (SHA) 

techniques for fast and reliable inspection of aircraft parts 
[6].  

 

Non-destructive testing (NDT) methods—e.g., based on 

acoustics, X-Rays, eddy current, or images—are capable of 

detecting defects during production as well as during usage.  

 

A recent and extensive review of NDT methods for defect 

detection and characterization in composites in aircraft 

structures is given in One of the most common SHA 

methods in the aerospace industry is the ultrasonic non-

destructive testing [7]–[10].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

FIGURE 1. Overview of the proposed hybrid machine 
learning and estimation-based trajectory prediction 

framework.[17] 

 

The use of machine learning for sensor signal interpretation 

in NDT reaches more than 25 years back. The application of 

support vector machines and neural networks has a long 

history in the automatic evaluation of ultrasonic data and 

showed promising results [11]–[15].  

 

However, finding the optimal setup for a particular purpose 

is difficult due to the wealth of available methods and the 

large number of hyper-parameters to be tuned. The fault 
diagnosis based on data-driven methods can be seen as the 

classification problem, where the binary classification has to 

detect whether there is a fault or not.  

 

Multiclassification is used to distinguish which type the 

fault belongs to. Multiple classifiers based on artificial 

intelligence (AI) techniques have been applied for fault 

diagnosis problem of aerospace systems, which include 

support vector machine, principal component analysis 

(PCA), Bayesian classifier [16], artificial neural network 

(ANN). Most recently, deep learning techniques have also 
been applied in aerospace for fault detection and diagnosis 

problems. 

 

 

 

 
 

 

 

 

 

A.  Problem statement 

In the estimation-based methods, the expected future 

behaviors of an aircraft rely on the assumption that the 
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aircraft follows its flight plan or an a priori known trajectory 

pattern.  

 

In this paper, such information is extracted from historical 

data by using machine learning techniques that can represent 

the collective behavior (or pattern) of the aircraft which 
operated in terminal airspace.  

 

Note that there could be some degree of errors in the trained 

model due to the assumed structure of the machine learning 

model, and the machine learning-based methods cannot 

explicitly account for the current motion of an aircraft. 

Hence, the machine learning model could generate 

inaccurate (possibly unfeasible) future states that violate the 

aircraft dynamics. To make up for it, we propose a flight 

trajectory prediction framework by combining the following 

two approaches:  
 

The collective behavior of a set of similar flight trajectories 

is represented as a machine learning model trained from 

historical data; and for the aircraft’s observed states until the 

current timestep, the machine learning model is then used to 

generate the expected states in the future timesteps, which 

are fed into an estimation-based method that combines the 

expected states from the data with the propagated states 

from the current state into the future timesteps based on the 

aircraft dynamics.  

 

The framework of the proposed method is illustrated in Fig. 
1 which consists of  

(i) data preparation by using a pattern identification 

framework,  

(ii) construction of a machine learning model with the 

identified trajectory patterns, and  

(iii) the hybrid trajectory prediction method that 

combines the machine learning-based method 

and the estimation-based method. The main 

contributions of this paper are as follows: 

 

 A novel method for trajectory prediction in 

complex terminal airspace is proposed, combining 

Gaussian Mixture Model (GMM) and Residual-

Mean Interacting Multiple Models (RM-IMM) 

[16].  

 GMM is utilized to extract future pseudo 
measurements based on past measurements up to 

the current timestep. RM-IMM is employed to 

estimate the current aircraft dynamics and predict 

the future trajectory. This approach represents the 

first integration of a machine learning-based 

method and an estimation-based method, aiming to 

improve the performance of aircraft trajectory 

prediction in intricate terminal airspace . 

 The proposed method offers real-time trajectory 

prediction for a 2-minute look-ahead time, while 

the combined LSTM and RM-IMM method fails to 
achieve real-time predictions. This prediction 

horizon of 2 minutes is chosen considering the 

response time of Conflict Alerts (CAs) and 

Minimum Safe Altitude Warnings (MSAWs) as 

documented in the literature [17]. 

 The proposed trajectory prediction method 

generates a greatly improved prediction accuracy 

compared to the baseline algorithms such as 

LSTM. 

 

B. Outline of the Paper 

The rest of the paper is organised as follows. The following 

section describes literature survey.The Artificial intelligence 

 and Machine learning, and compares and contrasts their 

advantages and disadvantages In Aerospace explained in 

Section III. The research methods are explained in Section 

IV. This is followed by Section 5, that contains the 
experimental results, followed by conclusion and 

suggestions for future research. 

 

2. LITERATURE SURVEY 
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Number Author and Paper title Parameters Summary of the Paper 

 

1. 

Machine Learning For 

Anomaly Assessment In Sensor 

Networks For NDT In 

Aerospace [24] 

Published in: IEEE Sensors 

Journal (Volume: 21, Issue: 9, 

01 May 2021) 

Electronic ISSN: 1558-1748 

DOI: 

10.1109/JSEN.2021.3062941 

investigated and compared various 

algorithms in machine learning for 

anomaly assessment with different 

feature analyses on ultrasonic signals 

recorded by sensor networks. 

The following methods were used and 

compared in anomaly detection 

modeling: hidden Markov models 

(HMM), support vector machines 

(SVM), isolation forest (IF), and 
reconstruction autoencoders (AEC). 

 

2. 

Multi-Objective Hybrid 

Artificial Intelligence 

Approach for Fault Diagnosis 

of Aerospace Systems 

[25] 

Published in: IEEE Access 

(Volume: 9) 

Date of Publication: 9th March 

2021  

Electronic ISSN: 2169-3536 

INSPEC Accession Number: 

20657163 

DOI: 

10.1109/ACCESS.2021.3064976 

This paper proposes a novel fault 

diagnosis approach using Deep Learning 

(DL) technique. 

The proposed approach consists of two 

main phases; the feature selection phase 

by Binary Grasshopper Optimization 

Algorithm (BGOA), and the learning and 

prediction phase by Artificial Neural 

Networks (ANNs) with voting ensemble 

method. 

 

3. 

Hybrid Machine Learning and 

Estimation-Based Flight 
Trajectory Prediction in 

Terminal Airspace [26] 

Published in: IEEE Access 

(Volume: 9) 
Date of Publication: 08 

November 2021 

Electronic ISSN: 2169-3536 

INSPEC Accession Number: 

21417164 

DOI: 

10.1109/ACCESS.2021.3126117 

This paper proposed a framework for 

trajectory prediction in terminal airspace 
by combining a machine learning-based 

method and a physics-based estimation 

method. The findings indicated that as 

the workload increased, MySQL 

exhibited a significant decline in 

performance compared to MongoDB. A 

trajectory prediction model based on 

machine learning is trained from 

historical surveillance data to represent 

the collective behavior of a set of flight 

trajectories, from which the data-driven 
prediction can be obtained as the 

expected future behavior of an incoming 

flight. 

 

4. 

How Can Artificial Intelligence 

Help With Space Missions - A 

Case Study: Computational 

Intelligence-Assisted Design of 

Space Tether for Payload 

Orbital Transfer Under 

Uncertainties [28] 

Published in: IEEE Access 

(Volume: 7) 

Date of Publication: 04 

November 2019 

Electronic ISSN: 2169-3536 

INSPEC Accession Number: 

19124558 

DOI: 

10.1109/ACCESS.2019.2951136 

this paper, a multi-objective optimal 

design for payload orbital transfer 

involving space tethers is proposed based 

on a computational intelligence-assisted 

design framework with the artificial wolf 

pack algorithm (AWPA). The proposed 

method effectively performs optimization 

tasks based on index of evolutionary 

pathway trends, has been defined to 

demonstrate the optimizing process. 

 
5. 

AdaptIDS: Adaptive Intrusion 
Detection for Mission-Critical 

Aerospace Vehicles [27] 

Published in: IEEE Access 
(Volume: 23) 

Date of Publication: 25 October 

2022 

Electronic ISSN: 1558-0016 

INSPEC Accession Number: 

22360217 

DOI: 

10.1109/TITS.2022.3214095 

This paper proposes, AdaptIDS, a novel 
adaptive intrusion detection system as a 

security analytics framework for the 

MIL-STD-1553 communication bus. 

AdaptIDS mainly adopts data science 

principles and leverages advanced deep 

learning techniques (i.e., the stacking 

ensemble) to boost its generalization 

capabilities for detecting unseen patterns 

of attacks. 
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III. DATA PREPEARATION 

The air traffic surveillance data utilized in this paper is 

sourced from the Automatic Dependent Surveillance-

Broadcast (ADS-B) system. This dataset provides 

comprehensive information about the aircraft's states, 

including timestamp, position (longitude, latitude, altitude), 

and speed (horizontal and vertical), for each flight 

trajectory. The study focuses on the arrival and departure 

flights at Incheon International Airport (ICN), a major 

airport in South Korea, from January to August 2019. Figure 

2 depicts the flight trajectories observed during a single 
month, specifically January 2019. 

 

During the January to August 2019 period, the dataset 

consists of 130,110 arrival trajectories and 138,999 

departure trajectories. Trajectories are recorded at one-

minute intervals, although there may be occasional missing 

or repeated timestamps. Trajectories with significant 

missing points are excluded, and any repeated points are 

eliminated through data cleaning. After this process, the 

analysis specifically considers trajectories recorded within a 

60-nautical-mile (nm) radius from the airport, encompassing 
the entire terminal airspace of ICN.  

 

To effectively handle the trajectories, an algorithm for 

identifying trajectory patterns, developed by the authors, is 

employed. This algorithm groups trajectories with similar 

behaviors together. It begins by calculating the dissimilarity 

between trajectories using Dynamic Time Warping (DTW) 

and Euclidean distance. The trajectories are then linked 

using the Ward's linkage method, resulting in the creation of 

a dendrogram. This dendrogram allows for the selection of 

the desired number of trajectory patterns, ensuring that all 

trajectories within a pattern share the same set of waypoints. 
 

As an illustrative example, Figure 3 showcases the resulting 

trajectory patterns, specifically presenting a set of arrival 
and departure trajectories along two distinct routes at ICN. 

Arrival flights pass through a fix called KARBU, serving as 

the entry point to the arrival route, before approaching ICN 

from the southeast for landing on Runway 33L/R or 34. 

Conversely, departure flights take off from Runway 15L/R 

and pass through a fix called EGOBA, which marks the 

final fix of the departure route. 

 
 
 

FIGURE 2. Illustrative examples of trajectory pattern 

identification. 

 

IV. METHODOLOGY 

In this section, we present the proposed algorithm for 

trajectory prediction in terminal airspace, that is, the hybrid 

machine learning and estimation-based trajectory prediction 

method. Two machine learning-based prediction methods 

are firstly explained as baseline algorithms: (i) conventional 

Gaussian Mixture Model (GMM) and (ii) Long Short-Term 

Memory (LSTM) which is a widely used deep learning 

method for time-series data. A Stochastic Linear Hybrid 

System (SLHS) is introduced and then the proposed hybrid 

approach for trajectory prediction is presented by combining 

a machine learning model and an estimation method. 

 

A. MACHINE LEARNING-BASED PREDICTION 

METHODS 
1. GMM-BASED TRAJECTORY PREDICTION METHOD 

 

The air traffic surveillance data examined in this study 

consists of trajectory patterns that exhibit similarities in the 

spatial dimension. However, it is important to note that 
these patterns also display variability in both the spatial and 

temporal dimensions. To accurately represent and analyze 

this variability, a GMM is employed. The GMM is a 

statistical model that assumes the data points are generated 

from a mixture of multiple Gaussian distributions. Each 

Gaussian component in the mixture represents a distinct 

mode or cluster within the data. By modeling the data as a 

combination of these Gaussian distributions, the GMM can 

effectively capture the complex and diverse characteristics 

present in the air traffic surveillance data. In the context of 

trajectory prediction, the GMM allows for the modeling of 

the probability distribution of data points within each 
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trajectory pattern. This distribution captures the inherent 

variability observed in both the spatial and temporal 

dimensions. It takes into account the different modes and 

patterns exhibited by the trajectories, allowing for a more 

accurate representation of their behavior. 

By employing a GMM, the trajectory patterns can be 

analyzed more comprehensively. The GMM captures not 

only the mean and covariance of each Gaussian component 

but also the weights that determine the contribution of each 

component to the overall mixture. This provides a flexible 

and adaptive framework for modeling the variability in the 

data. The GMM-based approach enhances the understanding 
and prediction of trajectory patterns in air traffic 

surveillance. It enables the identification of different modes 

of behavior within each pattern, accommodating the 

variations in flight paths, speeds, altitudes, and other 

relevant parameters. This richer representation of the data 

improves the accuracy of trajectory predictions, contributing 

to more effective air traffic management and decision-

making processes. the utilization of a GMM allows for the 

comprehensive modeling of the variability in the air traffic 

surveillance data. By capturing the spatial and temporal 

variations through a mixture of Gaussian distributions, the 
GMM-based method enhances the understanding and 

prediction of trajectory patterns, enabling more accurate and 

reliable analysis in the context of air traffic management. 

 

 
Figure 3. Measurement of posterior mean. 

 

2. LSTM-BASED TRAJECTORY PREDICTION 

METHOD. 
Trajectory prediction using the LSTM model in the 

aerospace industry involves several key steps. First, 

historical aircraft trajectory data, such as position, altitude, 

speed, and time information, is collected from sources like 
the Automatic Dependent Surveillance-Broadcast (ADS-B) 

system or radar systems. This data provides a 

comprehensive understanding of past aircraft movements 

and serves as the basis for training the LSTM model. The 

collected trajectory data is preprocessed to handle missing 

or redundant timestamps and remove any outliers or noisy 

data points. It is crucial to ensure data quality and 

consistency to achieve accurate predictions. Additionally, 

the trajectories are often grouped or segmented based on 

specific criteria, such as departure or arrival flights, routes, 

or airspace sectors, to capture distinct patterns and improve 

prediction performance. 

The LSTM model is then trained on the preprocessed 

trajectory data. The training process involves feeding 

historical trajectory sequences to the LSTM network and 

adjusting the model's internal parameters (weights and 

biases) through backpropagation and gradient descent 

optimization. The objective is to minimize the prediction 
error and improve the model's ability to capture complex 

temporal patterns and dependencies in aircraft trajectories. 

During training, the LSTM model learns to recognize and 

extract meaningful features from the input trajectory data. It 

can capture long-term dependencies and patterns that 

traditional machine learning methods may struggle to 

identify. The model's recurrent structure, with memory cells 

and gating mechanisms, enables it to retain important 

contextual information and make accurate predictions based 

on past trajectory states. Once the LSTM model is trained, it 

can be used for trajectory prediction. Given a sequence of 
historical trajectory points, the model sequentially processes 

the data, updating its internal states and generating 

predictions for future positions and movements. The model's 

ability to learn from past data allows it to make real-time 

predictions, providing estimates of aircraft positions and 

trajectories for a given time horizon. In the aerospace 

industry, LSTM-based trajectory prediction has numerous 

applications. It supports air traffic management by providing 

accurate forecasts of aircraft trajectories, assisting in 

airspace planning, traffic flow optimization, and conflict 

detection and resolution. It enables improved decision-

making for air traffic controllers, helping them manage 
airspace congestion and ensure safe and efficient operations. 

Moreover, LSTM trajectory prediction contributes to flight 

planning and optimization, aiding pilots and airlines in fuel 

efficiency, route planning, and time management. It can also 

enhance weather impact assessment by integrating real-time 

weather data into trajectory predictions, enabling airlines to 

make informed decisions and take appropriate measures to 

mitigate weather-related disruptions or hazards. 

Overall, the LSTM trajectory prediction method offers a 

powerful tool for the aerospace industry, enabling accurate 

forecasting of aircraft trajectories. By leveraging the model's 
ability to capture temporal dependencies, it enhances air 

traffic management, supports safe and efficient operations, 

and contributes to improved decision-making in the 

dynamic and complex airspace environment. 
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FIGURE 4. Structure of LSTM blocks. 

 

B. HYBRID PREDICTION METHOD 

1) ESTIMATION-BASED TRAJECTORY PREDICTION 
METHOD 

Estimation-based trajectory prediction methods play a 
crucial role in the aerospace industry for accurately 
forecasting the future paths of aircraft in terminal airspace. 
These methods utilize mathematical models and estimation 
algorithms to account for the complex dynamics involved in 
aircraft motion, such as changes in flight modes and 
continuous state evolution.In the estimation-based approach, 
the aircraft's dynamics are typically modeled as a Stochastic 
Linear Hybrid System (SLHS)[18],[19]. This model 
incorporates both discrete dynamics, which describe 
transitions between flight modes, and continuous dynamics, 
which govern the evolution of the aircraft's continuous states 
(e.g., position and speed) over time within each mode. To 
make trajectory predictions, estimation algorithms like 
Residual-Mean Interacting Multiple Models (RM-IMM) are 
employed. These algorithms leverage measurements from air 
traffic surveillance systems and estimate the probabilities of 
different flight modes and the continuous state of the aircraft. 
By considering the measurements up to a specific timestep, 
these algorithms update the mode probabilities and 
continuous state estimates iteratively. The estimation-based 
trajectory prediction approach allows for accurate tracking 
and prediction of aircraft trajectories by considering the 
inherent variability in both spatial and temporal dimensions. 
By modeling the aircraft's motion as a hybrid system and 
utilizing estimation algorithms, these methods can handle the 
frequent changes in flight modes and provide real-time 
predictions.In the aerospace industry, accurate trajectory 
prediction is vital for air traffic management, collision 
avoidance, and efficient airspace utilization. It enables air 
traffic controllers to make informed decisions regarding 
routing, sequencing, and separation of aircraft, ensuring safe 
and efficient operations. Additionally, accurate trajectory 
prediction contributes to improving situational awareness, 
enabling proactive measures to mitigate potential conflicts 

and enhance overall airspace management.By combining 
mathematical modeling, estimation algorithms, and real-time 
data from air traffic surveillance systems, estimation-based 
trajectory prediction methods offer valuable insights and 
tools for decision-making in the aerospace industry, 
ultimately enhancing safety, efficiency, and overall air traffic 
management. 

 

 

 

FIGURE 5. A hybrid approach to trajectory prediction. 
 

2. INTEGRATION OF MACHINE LEARNING-BASED AND 

ESTIMATION-BASED METHODS 

 

To combine the machine learning model with the 
estimation algorithm, our approach involves utilizing the 
machine learning prediction as a pseudo measurement within 
the estimation-based prediction using RM-IMM. This 
integration allows us to consider both the anticipated future 
behavior and the current motion of an aircraft. As depicted in 
Fig. 7, the trained model generates a pseudo measurement by 
leveraging the previous measurements up to timestep t. 
Subsequently, the estimation algorithm (RM-IMM) applies 
the aircraft dynamics to propagate the current state and then 
refines the propagated state by incorporating the pseudo 
measurement. The integration of machine learning-based and 
estimation-based methods in trajectory prediction involves 
combining the strengths of both approaches to enhance the 
accuracy and performance of predictions in the aerospace 
industry. This integration leverages the capabilities of 
machine learning models to capture complex patterns and 
trends in data, while also utilizing estimation algorithms to 
account for the dynamic nature of aircraft motion.At its core, 
the integration process begins with training a machine 
learning model using historical trajectory data. The model 
learns from the past behavior of aircraft, capturing 
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relationships between various input features such as position, 
velocity, altitude, and time. The trained model is then used to 
generate predictions of future aircraft trajectories based on 
the current and past states.However, machine learning 
models alone may not fully account for the uncertainty and 
variability inherent in aircraft dynamics, especially in 
complex airspace environments. This is where estimation-
based methods, such as the Residual-Mean Interacting 
Multiple Models (RM-IMM), come into play. Estimation 
algorithms utilize mathematical models to represent the 
aircraft's dynamics and incorporate real-time measurements 
to update and refine the predicted trajectories. The 
integration process involves using the machine learning 
prediction as a pseudo measurement within the estimation 
algorithm. The pseudo measurement is generated based on 
the machine learning model's output, considering the 
previous measurements up to the current timestep. The 
estimation algorithm then integrates this pseudo 
measurement into its prediction process, combining it with 
the propagated state obtained from the aircraft dynamics 
model. 

 

By integrating the machine learning prediction as a pseudo 
measurement, the estimation algorithm can leverage the 
strengths of both approaches. The machine learning model 
captures long-term patterns and trends in the data, providing 
insights into the expected future behavior of aircraft. On the 
other hand, the estimation algorithm considers the immediate 
dynamics and current measurements to refine the predicted 
trajectories, ensuring accurate and up-to-date 
predictions.This integration approach offers several 
advantages. It enhances the prediction accuracy by 
combining the predictive power of machine learning models 
with the adaptability of estimation algorithms. It also 
improves the robustness of trajectory predictions by 
accounting for uncertainties and variations in aircraft motion. 
Furthermore, the integration enables real-time predictions, 
allowing for timely decision-making in air traffic 
management and airspace operations.Overall, the integration 
of machine learning-based and estimation-based methods in 
trajectory prediction provides a comprehensive and effective 
solution for the aerospace industry. It combines the strengths 
of both approaches to deliver accurate, adaptive, and real-
time predictions, contributing to safer and more efficient air 
traffic management. 

V. EXPERIMENTAL RESULTS 

To measure the performance of the trajectory prediction 

methods in detail, we introduce four metrics that are widely 

used in trajectory prediction [20]–[22]. The horizontal error 

(HE) measures the difference between the actual and 

expected locations of an aircraft in the horizontal dimension. 

The along-track error (ATE) and cross-track error (CTE) 

measure the parallel and perpendicular difference to the 

actual course between the aircraft’s actual and predicted 

posi- tions. The vertical error (VE) represents the altitude 

error in the vertical dimension. These metrics can also be 

computed by using Root Mean Square Error (RMSE) which 

is given by RMSE = " 1 n Xn t=1 (Pt − Rt) 2 #1 2 (25) 

where n is the number of data points. Pt represents the 

trajectory predicted by a model and Rt denotes the actual 

trajectory at timestep t. Since RMSE is always non-negative, 

the smaller the values of each metric, the closer the 

prediction is to the actual value, which means that the 

model’s prediction is more accurate. 
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FIGURE 6 .  Illustrative prediction results of the three 
methods or arrival and departure flight. 
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A. COMPARATIVE ANALYSIS 

The literature [23] has shown that the median response 

time (i.e., the time between the activation of an alert and the 

issue of a control instruction) following a Conflict Alerts 

(CAs) and a Minimum Safe Altitude Warnings (MSAWs) are 

88 seconds and 38 seconds, respectively. In this regard, the 

2-minutes- ahead prediction could help ATC’s situational 

awareness that is important for safe and efficient air traffic 

operations. In the experimental tests, the predictions of each 

method are per- formed over the horizon of 24 timesteps 

(120 seconds with the time interval ∆t 5 seconds).For the 

illustration, we first present representative trajectories for 

the arrivals and the departures around ICN. Figure 8 

presents a total of 4 prediction results of two arrivals (a, b) 

and two departures (c, d). The actual and the predicted 

trajectories in the horizontal dimension and in the vertical 

dimension are plotted in the left and the right, respectively. 

As can be seen from Fig. 8 (a1 - d1), the horizontal 

prediction of the three methods shows the same trend with 

the actual trajectory, but the predicted trajectory of the 

LSTM model deviates signif- icantly, especially in the 

heading, from the actual trajectory compared with the other 

two methods. In Fig. 8 (a2 - d2), compared with the actual 

altitude, the predicted trajectory points of the LSTM 

model have large fluctuations at some timesteps. For all 

the plots in Fig. 8, it can generally be seen that the 

trajectories predicted by the proposed hybrid method are 

closest to the actual trajectory, with the smallest error, 

followed by GMM and LSTM.To evaluate the performance 

of the proposed hybrid trajec- tory prediction method, the 

four metrics of HE, ATE, CTE, and VE discussed in Section 

IV-A are first computed based on the predicted trajectories 

of arrival aircraft and ground truth. For the illustration, the 

histograms of the metrics are pre- sented in Fig. 9. The HE 

histogram of the proposed method is skewed to the left and 

the ATE, CTE, and VE histograms are concentrated on 

around zero, which means the proposed method 

outperforms the other methods in terms of the given 

evaluation metrics.We carried out the extensive trajectory 

prediction tests with all the available test dataset for the 

quantitative evalu- ation of the proposed method, and the 

RMSE of HE, ATE, CTE, and VE is used to measure 

prediction accuracy. The RMSE is computed using Eq. 

(25) and the results of arrival and departure flights are 

presented in Table 2 and Table 3, respectively. The 

comparison shows that the prediction errors, HE, ATE, CTE, 

and VE, of the proposed hybrid method for arrival flights 

are reduced by 46.8%, 48.6%, 24.2%, and 1.2% compared 

to the prediction errors of GMM on average and by 76.0%, 

77.4%, 65.0%, and 55.8% compared to the prediction 

errors of the LSTM model on average. Similarly, the 

prediction errors of the hybrid method for departure flights 

also show significant performance improvements, that is, 

huge error reduction compared to the other two base- 

line algorithms, like the arrivals. Therefore, based on these 

quantitative analysis results, it is concluded that our hybrid 

trajectory prediction method outperforms the GMM and 

the LSTM model for the given time horizon. In other  

 

words, the experimental results show that the GMM, as 

well as the proposed hybrid method, can predict the future 

position of the aircraft trajectories more accurately than the 

LSTM model in general. Interestingly, as shown in Fig. 10, 

while the LSTM model performs similarly to the hybrid 

trajectory prediction method and better than the GMM for one 

or two-step prediction (corresponding to 5 or 10 sec- onds), 

it is quickly outperformed by the other two methods as the 

prediction time grows. This is because for LSTM, as 

discussed in Section III-A2, only the future position in one-

step ahead can be predicted at a time, to achieve real-time 

prediction. For a look-ahead time of 2 minutes, the LSTM 

model needs to be implemented multiple times, each time 

with a new one-step prediction appended to the original 

data. Therefore, the error from each step’s prediction 

propagates, which causes the performance of the LSTM 

model to be worse than the proposed hybrid method and 

the GMM in multi-step trajectory prediction.The prediction 

errors of the hybrid method are lower than those of GMM 

in general. The difference is attributed to the current 

dynamics (or flight mode) of the aircraft that is explic- itly 

incorporated into the hybrid method, while the GMM 

generates future predictions based only on the learned 

model and past measurements. For the illustration, the 

prediction example by a single GMM that shows poor 

performance is presented in Fig. 11. The predicted 

trajectory of the GMM begins to slow down and turn as 

soon as the prediction starts, even though the aircraft 

maintains the Constant Velocity (CV) mode. This sudden 

change in the aircraft’s motion cannot be explained by its 

dynamics because the current motion of the aircraft follows 

the CV mode with a high probability. Due to the interaction 

between the GMM and RM-IMM in Fig. 7, the pseudo 

measurement from the GMM has been corrected by RM-

IMM step by step, and thus the prediction is kept closer to 

the ground truth, while the prediction by a single GMM 

significantly deviates from the ground truth after five steps. 



 
 
 
 
 

Volume 6- Issue 2, August 2023 
Paper : 6 

 

 

 Artificial intelligence and Machine learning for aerospace application  

page 11 
 

Therefore, we conclude that the proposed hybrid machine 

learning and an estimation-based method can contribute to 

enhancing the prediction accuracy by facilitating the 

benefits of both methods. 

 

FIGURE 7. Interaction between machine learning and 
estimation-based method. 

 

FIGURE 8. An example of prediction error of the three methods over time. 

 
 

 

 

VI. CONCLUSION 

 

In this paper, we propose a framework that combines a 

machine learning-based method and an estimation-based 

method to improve trajectory prediction accuracy in 

terminal airspace. Our approach focuses on capturing the 

collective behavior of trajectory patterns using a Gaussian 

Mixture Model (GMM) as a machine learning model. The 

output of the GMM serves as a pseudo measurement for 

the Residual-Mean Interacting Multiple Models (RM-
IMM), an estimation-based prediction method. We 

evaluate and demonstrate our proposed method using real 

air traffic surveillance data from Incheon International 

Airport (ICN) in South Korea, considering a total of 

269,109 trajectories. 

To assess the prediction accuracy, we utilize four metrics: 

horizontal error, along-track error, cross-track error, and 

vertical error. The quantitative comparison reveals that 

our proposed method outperforms both the GMM and 

LSTM models. This indicates that our approach can 

significantly enhance Air Traffic Control (ATC) 

situational awareness, thereby improving the safety and 

efficiency of air traffic operations in terminal 

airspace.However, our proposed method has certain 

limitations that should be addressed in future research. 

Firstly, we consider a look-ahead time of 2 minutes, based 

on existing literature [22]. Extending the prediction 

horizon to longer time intervals is an avenue for further 

investigation. Secondly, while our method focuses on 
data-driven trajectory prediction, we do not consider the 

reliability of the predictions or potential adversarial 

attacks that could lead to incorrect predictions. These 

aspects require attention in future studies. Lastly, we rely 

solely on surveillance data, specifically Automatic 

Dependent Surveillance-Broadcast (ADS-B) data, without 

incorporating additional features such as meteorological 

data (e.g., wind speed and direction) and operational 
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information. Future work will explore incorporating these 

factors to achieve more accurate and reliable trajectory 

prediction for longer look-ahead times. Additionally, 

weaim to enhance prediction performance by conducting 

further clustering along the temporal dimension.By 

addressing these limitations and refining our approach, we 

can advance trajectory prediction capabilities, providing 

ATC with improved situational awareness and  

 

 

 

contributing to the safety and efficiency of air traffic 
operations in terminal airspace. 
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