

 Volume 7- Issue 1, January 2024

 Paper : 100

Implementing Simultaneous Localization and Mapping for Autonomous Navigation in ROS Turtlebot3 Page 1

Implementing Simultaneous Localization and Mapping for

Autonomous Navigation in ROS Turtlebot3

Surya Kodukula

Dept of Mechanical Engineering

GITAM (Deemed to be University)

Hyderabad, India
suryakodukula731@gmail.com

Kiran Kumar Abbili

Dept of Mechanical Engineering

GITAM (Deemed to be University)

Hyderabad, India

kabbili@gitam.edu

Vamshi Krishna Reddy Hanmanthgari

Dept of Mechanical Engineering

GITAM (Deemed to be University)

Hyderabad, India

vamshikrishna.h30@gmail.com

Siddhartha Gonella Venkata Saravana

Krishna

Dept of Mechanical Engineering

GITAM (Deemed to be University)

Hyderabad, India

siddharthagvsk90@gmail.com

Abstract— This project presents an autonomous navigation

system for a Turtlebot3 robot using the Robot Operating System

(ROS). The system leverages the simultaneous localization and

mapping (SLAM) algorithm to create a map of an unknown

environment and then uses it to plan and execute autonomous

navigation. The implementation includes both simulation in

Gazebo and deployment on a physical Turtlebot3 robot. The

SLAM algorithm used in this project is the gmapping package,

which creates a 2D occupancy grid map of the environment

using data from the Turtlebot3's laser range finder sensor. The

resulting map is then used by the Turtlebot3's navigation stack,

which plans and executes trajectories to move the robot

autonomously towards a goal.

The simulation in Gazebo was used to test and evaluate the

system before deployment on the Turtlebot3 robot. The robot's

autonomous navigation performance was tested in various

scenarios, including navigating through narrow passages and

avoiding obstacles.

The implementation on the physical Turtlebot3 robot involved

setting up the hardware and software to communicate with ROS

and deploying the SLAM and navigation stack packages. The

robot was then able to autonomously navigate towards a goal

while avoiding obstacles.

The results of this project demonstrate the feasibility and

effectiveness of using ROS and the Turtlebot3 platform for

autonomous navigation.

Keywords— Robot Operating System (ROS), SLAM, Gazebo,

Navigation

I. INTRODUCTION

Autonomous navigation, which involves the ability of a
robot to plan and execute its own actions without human
intervention, is a critical component of modern robotics. It
enables robots to perform tasks in complex and dynamic
environments, such as industrial automation, logistics, and
search and rescue operations.

Autonomous navigation is a well-researched topic in the
field of robotics, with numerous studies addressing various
aspects of the problem. In this section, we provide an
overview of the existing literature on autonomous
navigation, with a focus on SLAM, path planning, and
obstacle avoidance. SLAM is a fundamental technology for
autonomous navigation that enables a robot to build a map of
its environment and localize itself within it. SLAM can be
achieved using different types of sensors, such as cameras,
lidars, and sonars, and various algorithms, such as extended
Kalman filter (EKF), particle filter (PF), and graph-based
methods. One of the most popular SLAM algorithms is the
simultaneous localization and mapping (SLAM), which uses
a probabilistic framework to estimate the robot's pose and the
map of the environment at the same time. SLAM has been
extensively studied in the literature, with notable works
including [1], [2], and [3].

Path planning is another critical component of
autonomous navigation that involves finding an optimal path
from the robot's current position to its goal while avoiding
obstacles and other constraints. Path planning can be
achieved using different techniques, such as potential fields,
A*, RRT, and D* algorithms. One of the most widely used
path planning algorithms is the A* algorithm, which uses a
heuristic search to find the shortest path between two points.
A* has been extensively studied in the literature, with
notable works including [4], [5], and [6].

mailto:suryakodukula731@gmail.com
mailto:kabbili@gitam.edu
mailto:vamshikrishna.h30@gmail.com
mailto:siddharthagvsk90@gmail.com

 Volume 7- Issue 1, January 2024

 Paper : 84

Implementing Simultaneous Localization and Mapping for Autonomous Navigation in ROS Turtlebot3 Page 2

Obstacle avoidance is a key requirement for safe and
efficient autonomous navigation, as it enables the robot to
avoid collisions with static and dynamic obstacles in its
environment. Obstacle avoidance can be achieved using
different sensors, such as proximity sensors, cameras, and
lidars, and various algorithms, such as potential fields,
reactive methods, and model predictive control. One of the
most effective obstacle avoidance methods is the reactive
method, which uses a set of rules to steer the robot away
from obstacles. Reactive methods have been extensively
studied in the literature, with notable works including [7],
[8], and [9].

While significant progress has been made in autonomous
navigation, several challenges remain, such as robustness,
scalability, and real-time performance.

The motive behind the project is to make a robot that
could move autonomously in any environment to reach the
final destination without the human intervention. In
warehouses the objects or the items which are to be placed in
particular location there were pallet trucks and unit carrier
etc. here they require human where the same man power can
be used for different place. So this gave us the motive to
make compact model that can carry the weight on it and
reach the destination.

II. METHODOLOGY

A. Robot Operating System

ROS is platform for robot software development where it
gives us a set of packages to function the robot and it also
gives us few simulation software where the working of robot
in open world can be done in the system. It is a backbone for
the robot to perform different operations in different
circumstances.

The platform we have chosen here is the ROS Noetic robot .
Which was the latest version supported for Ubuntu 20.04.5.

The following are the packages used and are listed below:

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

The above package is used to move the robot.

roslaunch turtlebot3_slam turtlebot3_slam.launch

This package activates the RVIZ software which used to
localize and position the object.

roslaunch turtlebot3_bringup turtlebot3_robot.launch

This package is used for interfacing the robot and the PC
(the host) .

B. Sensors And Equipment

Fig.1 shows the robot mounted with LDS (Laser Distance
Sensor), Raspberry Pi Module v2.1. The LDS senor has the
capability of detection range from 160 – 8000 mm.

Once the equipment gets ready then, they are needed to
be connected to the ROS . And the equipment consumes the
low power . The setup does not take much time but the
connections needed to be done carefully.

Fig.1. Turtlebot3 Waffle

C. Mapping and Localization

Once the whole equipment is connected then it is needed

to be interfaced with the host PC and must be connect with

the same network once it is done then using the slam

package the visualization software open which marks the

location of the things by LDS sensor within the inflation

radius of 0.15m. Once mapping is done it locates the things

and saves the objects over that point.

III. IMPLEMENTATION

The packages Teleop key and SLAM are to be installed,
after installing them they must run in ubuntu. The commands
are listed below:

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

roslaunch turtlebot3_slam turtlebot3_slam.launch

roslaunch turtlebot3_bringup turtlebot3_robot.launch

 Volume 7- Issue 1, January 2024

 Paper : 84

Implementing Simultaneous Localization and Mapping for Autonomous Navigation in ROS Turtlebot3 Page 3

The very last command helps to interface the robot to the
monitor which when the instructions are given it will be
followed.

Fig.1. Shows the autonomous navigation, the robot must
map the environment by using the teleop key command
which makes the robot move and SLAM command which
generates the map of the environment. The generated map
must be saved after that the robot must be given the
orientation for the starting point and also the final destination
to reach autonomously.

Fig. 2. Mapping the room using SLAM

The Fig.3 helps to understand the autonomous navigation
visualization in RVIZ tool which in an environment it will be
showing all the obstacles and the goal to be reached. As the
obstacles being observed in the tool, it will be generating a
new plan based on the actions it will reach to its final
destination.

.

Fig. 3. Visualization of robot in RVIZ

IV. RESULTS AND DISCUSSION

Installing and testing the navigation stack through the
simulation was straightforward execution as the instructions
from site tutorials were clear. Testing the navigation stack
with TurtleBot in a simulated world was also clear by
following the tutorials.

Simply clicking the first Pose Estimate button on the
TurtleBot and then clicking the Nav Goal button and the
desired location in the map made the TurtleBot immediately
auto-navigate to the destination. It is important to define the
Pose Estimation directly on the robot and in the correct
direction as failing to do so may cause problems with the
navigation and in the end cause failing to find the
destination. Problems with navigation can also occur when
the destination is far away and the path is narrow. This will
fail to create and find the path for the robot to navigate. The
counter measurement for this purpose appeared to rotate
recovery behaviour operation. The robot rotated twice
around to scan the area and searched for a possible route. If
the robot still failed to find a route it decided to abort and
informed that it could not find valid control. The apparent
solution was to give a destination point with smaller steps
before giving the final goal of the destination. After giving
the small steps first, the robot managed to find the final
destination point. Martinez and Fernandez (2013) pointed out
that the auto-navigation stack applies only to a certain type
of robot for it to work. The navigation stack can only be
implemented to a holonomic-wheeled with a different- trial
drive. In addition, for the robot to observe the environment, a
planar laser is needed to create localization and map. The
first simulation test of auto-navigation was per- formed into a
readymade map.

However, if a map is not readily available there is a
solution based on mapping with the SLAM method. In the
SLAM method, TurtleBot roams around the unknown area
while sim- simultaneously scanning the area by using the
robot’s odometry and laser sensor data. The collected data is
sent to the map server stack and mapping package in the
ROS to form a map. The map creation based on SLAM in
ROS with Gazebo simulation and Rviz visualization
consisted of the following steps. First, the Simulation is
started by ROS in Gazebo. Secondly, TurtleBot’s movement
and sensor measurements are created in Gazebo simulation
and the results are exported to ROS. Thirdly, the calculation
of SLAM mapping and robot localization is calculated in
ROS. Finally, simulated data results are visualized and
imported into Rviz from ROS[10].

When the mapping was tested, it was noticed that the tool
had difficulties scanning the area when the TurtleBot
roamed. The mapping status informed constantly that scan
matching failed. Visually the problem was seen in the Rviz
where the TurtleBot could not plot the scanned area and the
location of the TurtleBot was also inaccurate as,
occasionally, the TurtleBot made sudden teleportation

 Volume 7- Issue 1, January 2024

 Paper : 84

Implementing Simultaneous Localization and Mapping for Autonomous Navigation in ROS Turtlebot3 Page 4

movements in the simulated world. To improve the ability to
scan the area and also keep track of the TurtleBot’s
movement, the speed was decreased. This improved the
performance and the chance for TurtleBot to create the area.
Nevertheless, this did not entirely remove the difficulties in
creating the map. As a result, the map scanning and creating
process was a slow phase as each step had to be made sure
that the TurtleBot was able to scan and register the area.
Another way was to repeat the same route to create the map
properly. The result of the created map was visualized
through Rviz. The scanned area was successfully created if it
appeared as a grey area in the Rviz. Through numerous trial
and error methods, the map was created and the TurtleBot
managed to auto-navigate around the created map.

V. CONCLUSIONS

In this research, we implemented an autonomous
navigation system based on SLAM and ROS, using the
Turtlebot3 platform and the Gazebo simulation environment.
We used the Hector SLAM algorithm to build a map of the
environment and the ROS navigation stack to enable the
Turtlebot3 to navigate autonomously while avoiding
obstacles. We conducted several experiments to test and
evaluate the system's performance and found that it was
robust, efficient, and accurate in various scenarios.

The results of this research demonstrate the effectiveness
of SLAM-based autonomous navigation systems for mobile
robots and highlight the potential of ROS as a framework for
robotics research and development. The Turtlebot3 platform
and the Gazebo simulation environment provided a
convenient and cost-effective means for testing and
evaluating the system's performance, enabling us to iterate
and improve the system rapidly.

Future Scope

While the results of this research are promising, there is
still room for improvement and further exploration. One area
for future research is the integration of more advanced path
planning and obstacle avoidance algorithms, such as MPC-

based controllers or deep learning-based methods, which
may enable the Turtlebot3 to navigate more complex
environments with greater efficiency and safety.

Another area for future research is the integration of more
sensors and hardware, such as LIDAR or RGB-D cameras,
which may improve the accuracy and robustness of the
SLAM algorithm and enable the robot to perceive its
environment in greater detail.

 REFERENCES

[1] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT

press.

[2] Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization
and mapping: part I. IEEE robotics & automation magazine, 13(2),
99-110.

[3] Stachniss, C., & Burgard, W. (2008). Information gain-based
exploration using Rao-Blackwellized particle filters. Autonomous
Robots, 25(3), 319-344.

[4] Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, (4), 100-107.

[5] LaValle, S. M. (2006). Planning algorithms. Cambridge university
press.

[6] [6] Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms
for optimal motion planning. The International Journal of Robotics
Research, 30(7), 846-894.

[7] [7] Borenstein, J., & Koren, Y. (1991). The vector field histogram-
fast obstacle avoidance for mobile robots

[8] [8] Khatib, O. (1986). Real-time obstacle avoidance for manipulators
and mobile robots. The international journal of robotics research,
5(1), 90-98.

[9] [9] Vasquez, J. C., Broxham, J., Kolski, S., & Ramos, F. (2019).
Model predictive control for obstacle avoidance in autonomous
ground vehicles: A review. Annual Reviews in Control, 47, 146-162.

[10] [10] Afanasyev, I., Sagitov, A., Magid, E. (2015). ROS-Based SLAM
for a Gazebo-Simulated Mobile Robot in Image-Based 3D Model of
Indoor Environment. In: Battiato, S., Blanc-Talon, J., Gallo, G.,
Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for
Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer
Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-
319-25903-1_24.

