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Abstract— This project presents an autonomous navigation 

system for a Turtlebot3 robot using the Robot Operating System 

(ROS). The system leverages the simultaneous localization and 

mapping (SLAM) algorithm to create a map of an unknown 

environment and then uses it to plan and execute autonomous 

navigation. The implementation includes both simulation in 

Gazebo and deployment on a physical Turtlebot3 robot. The 

SLAM algorithm used in this project is the gmapping package, 

which creates a 2D occupancy grid map of the environment 

using data from the Turtlebot3's laser range finder sensor. The 

resulting map is then used by the Turtlebot3's navigation stack, 

which plans and executes trajectories to move the robot 

autonomously towards a goal. 

The simulation in Gazebo was used to test and evaluate the 

system before deployment on the Turtlebot3 robot. The robot's 

autonomous navigation performance was tested in various 

scenarios, including navigating through narrow passages and 

avoiding obstacles. 

The implementation on the physical Turtlebot3 robot involved 

setting up the hardware and software to communicate with ROS 

and deploying the SLAM and navigation stack packages. The 

robot was then able to autonomously navigate towards a goal 

while avoiding obstacles. 

The results of this project demonstrate the feasibility and 

effectiveness of using ROS and the Turtlebot3 platform for 

autonomous navigation. 

 

Keywords— Robot Operating System (ROS), SLAM, Gazebo, 

Navigation 

I. INTRODUCTION  

Autonomous navigation, which involves the ability of a 
robot to plan and execute its own actions without human 
intervention, is a critical component of modern robotics. It 
enables robots to perform tasks in complex and dynamic 
environments, such as industrial automation, logistics, and 
search and rescue operations. 

 

Autonomous navigation is a well-researched topic in the 
field of robotics, with numerous studies addressing various 
aspects of the problem. In this section, we provide an 
overview of the existing literature on autonomous 
navigation, with a focus on SLAM, path planning, and 
obstacle avoidance. SLAM is a fundamental technology for 
autonomous navigation that enables a robot to build a map of 
its environment and localize itself within it. SLAM can be 
achieved using different types of sensors, such as cameras, 
lidars, and sonars, and various algorithms, such as extended 
Kalman filter (EKF), particle filter (PF), and graph-based 
methods. One of the most popular SLAM algorithms is the 
simultaneous localization and mapping (SLAM), which uses 
a probabilistic framework to estimate the robot's pose and the 
map of the environment at the same time. SLAM has been 
extensively studied in the literature, with notable works 
including [1], [2], and [3]. 

Path planning is another critical component of 
autonomous navigation that involves finding an optimal path 
from the robot's current position to its goal while avoiding 
obstacles and other constraints. Path planning can be 
achieved using different techniques, such as potential fields, 
A*, RRT, and D* algorithms. One of the most widely used 
path planning algorithms is the A* algorithm, which uses a 
heuristic search to find the shortest path between two points. 
A* has been extensively studied in the literature, with 
notable works including [4], [5], and [6]. 
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Obstacle avoidance is a key requirement for safe and 
efficient autonomous navigation, as it enables the robot to 
avoid collisions with static and dynamic obstacles in its 
environment. Obstacle avoidance can be achieved using 
different sensors, such as proximity sensors, cameras, and 
lidars, and various algorithms, such as potential fields, 
reactive methods, and model predictive control. One of the 
most effective obstacle avoidance methods is the reactive 
method, which uses a set of rules to steer the robot away 
from obstacles. Reactive methods have been extensively 
studied in the literature, with notable works including [7], 
[8], and [9]. 

While significant progress has been made in autonomous 
navigation, several challenges remain, such as robustness, 
scalability, and real-time performance.  

The motive behind the project is to make a robot that 
could move autonomously in any environment to reach the 
final destination without the human intervention. In 
warehouses the objects or the items which are to be placed in 
particular location there were pallet trucks and unit carrier 
etc.  here they require human where the same man power can 
be used for different place. So this gave us the motive to 
make compact model that can carry the weight on it and 
reach the destination. 

II. METHODOLOGY 
 

A. Robot Operating System 

ROS is platform for robot software development where it 
gives us a set of packages to function the robot and it also 
gives us few simulation software where the working of robot 
in open world can be done in the system. It is a backbone for 
the robot to perform different operations in different 
circumstances.  
 
The platform we have chosen here is the ROS Noetic robot . 
Which was the latest version supported for Ubuntu 20.04.5. 
 
The following are the packages used and are listed below: 
 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

The above package is used to move the robot. 

roslaunch turtlebot3_slam turtlebot3_slam.launch 

This package activates the RVIZ software which used to 
localize and position the object. 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

This package is used for interfacing the robot and the PC 
(the host) . 

B. Sensors And Equipment 

Fig.1 shows the robot mounted with LDS (Laser Distance 
Sensor), Raspberry Pi Module v2.1. The LDS senor has the 
capability of detection range from 160 – 8000 mm. 

 

Once the equipment gets ready then, they are needed to 
be connected to the ROS . And the equipment consumes the 
low power . The setup does not take much time but the 
connections needed to be done carefully.  

 

Fig.1. Turtlebot3 Waffle 

 

 

C.  Mapping and Localization 

Once the whole equipment is connected then it is needed 

to be interfaced with the host PC and must be connect with 

the same network once it is done then using the slam 

package the visualization software open which marks the 

location of the things by LDS sensor within the inflation 

radius of 0.15m. Once mapping is done it locates the things 

and saves the objects over that point.  

 

III. IMPLEMENTATION  

 

The packages Teleop key and SLAM are to be installed, 
after installing them they must run in ubuntu. The commands 
are listed below:  

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

roslaunch turtlebot3_slam turtlebot3_slam.launch 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 



 

 

 

 

                                                                                                                                                 Volume 7- Issue 1, January 2024 

                                                                                                                                                                                      Paper : 84 
 

 

Implementing Simultaneous Localization and Mapping for Autonomous Navigation in ROS Turtlebot3   Page 3 

 

 

The very last command helps to interface the robot to the 
monitor which when the instructions are given it will be 
followed. 

 

Fig.1. Shows the autonomous navigation, the robot must 
map the environment by using the teleop key command 
which makes the robot move and SLAM command which 
generates the map of the environment. The generated map 
must be saved after that the robot must be given the 
orientation for the starting point and also the final destination 
to reach autonomously. 

 

Fig. 2. Mapping the room using SLAM 

 

The Fig.3 helps to understand the autonomous navigation 
visualization in RVIZ tool which in an environment it will be 
showing all the obstacles and the goal to be reached. As the 
obstacles being observed in the tool, it will be generating a 
new plan based on the actions it will reach to its final 
destination. 

    

.  

Fig. 3. Visualization of robot in RVIZ  

 

IV. RESULTS AND DISCUSSION 

Installing and testing the navigation stack through the 
simulation was straightforward execution as the instructions 
from site tutorials were clear. Testing the navigation stack 
with TurtleBot in a simulated world was also clear by 
following the tutorials. 

Simply clicking the first   Pose Estimate button on the 
TurtleBot and then clicking the   Nav Goal button and the 
desired location in the map made the TurtleBot immediately 
auto-navigate to the destination. It is important to define the   
Pose Estimation directly on the robot and in the correct 
direction as failing to do so may cause problems with the 
navigation and in the end cause failing to find the 
destination. Problems with navigation can also occur when 
the destination is far away and the path is narrow. This will 
fail to create and find the path for the robot to navigate. The 
counter measurement for this purpose appeared to rotate 
recovery behaviour operation. The robot rotated twice 
around to scan the area and searched for a possible route. If 
the robot still failed to find a route it decided to abort and 
informed that it could not find valid control. The apparent 
solution was to give a destination point with smaller steps 
before giving the final goal of the destination. After giving 
the small steps first, the robot managed to find the final 
destination point. Martinez and Fernandez (2013) pointed out 
that the auto-navigation stack applies only to a certain type 
of robot for it to work. The navigation stack can only be 
implemented to a holonomic-wheeled with a different- trial 
drive. In addition, for the robot to observe the environment, a 
planar laser is needed to create localization and map. The 
first simulation test of auto-navigation was per- formed into a 
readymade map. 

However, if a map is not readily available there is a 
solution based on mapping with the SLAM method. In the 
SLAM method, TurtleBot roams around the unknown area 
while sim- simultaneously scanning the area by using the 
robot’s odometry and laser sensor data. The collected data is 
sent to the map server stack and mapping package in the 
ROS to form a map. The map creation based on SLAM in 
ROS with Gazebo simulation and Rviz visualization 
consisted of the following steps. First, the Simulation is 
started by ROS in Gazebo. Secondly, TurtleBot’s movement 
and sensor measurements are created in Gazebo simulation 
and the results are exported to ROS. Thirdly, the calculation 
of SLAM mapping and robot localization is calculated in 
ROS. Finally, simulated data results are visualized and 
imported into Rviz from ROS[10]. 

When the mapping was tested, it was noticed that the tool 
had difficulties scanning the area when the TurtleBot 
roamed. The mapping status informed constantly that scan 
matching failed. Visually the problem was seen in the Rviz 
where the TurtleBot could not plot the scanned area and the 
location of the TurtleBot was also inaccurate as, 
occasionally, the TurtleBot made sudden teleportation 
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movements in the simulated world. To improve the ability to 
scan the area and also keep track of the TurtleBot’s 
movement, the speed was decreased. This improved the 
performance and the chance for TurtleBot to create the area. 
Nevertheless, this did not entirely remove the difficulties in 
creating the map. As a result, the map scanning and creating 
process was a slow phase as each step had to be made sure 
that the TurtleBot was able to scan and register the area. 
Another way was to repeat the same route to create the map 
properly. The result of the created map was visualized 
through Rviz. The scanned area was successfully created if it 
appeared as a grey area in the Rviz. Through numerous trial 
and error methods, the map was created and the TurtleBot 
managed to auto-navigate around the created map. 

 

V.  CONCLUSIONS 

In this research, we implemented an autonomous 
navigation system based on SLAM and ROS, using the 
Turtlebot3 platform and the Gazebo simulation environment. 
We used the Hector SLAM algorithm to build a map of the 
environment and the ROS navigation stack to enable the 
Turtlebot3 to navigate autonomously while avoiding 
obstacles. We conducted several experiments to test and 
evaluate the system's performance and found that it was 
robust, efficient, and accurate in various scenarios. 

The results of this research demonstrate the effectiveness 
of SLAM-based autonomous navigation systems for mobile 
robots and highlight the potential of ROS as a framework for 
robotics research and development. The Turtlebot3 platform 
and the Gazebo simulation environment provided a 
convenient and cost-effective means for testing and 
evaluating the system's performance, enabling us to iterate 
and improve the system rapidly. 

Future Scope 

While the results of this research are promising, there is 
still room for improvement and further exploration. One area 
for future research is the integration of more advanced path 
planning and obstacle avoidance algorithms, such as MPC-

based controllers or deep learning-based methods, which 
may enable the Turtlebot3 to navigate more complex 
environments with greater efficiency and safety. 

Another area for future research is the integration of more 
sensors and hardware, such as LIDAR or RGB-D cameras, 
which may improve the accuracy and robustness of the 
SLAM algorithm and enable the robot to perceive its 
environment in greater detail. 
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