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Abstract—Object detection is an paramount task in computer vision that has applications in various fields, including robotics, 
autonomous vehicles, and augmented reality. In recent years, significant advancements have been made in computer vision techniques, 
leading to faster and more accurate object detection models. One such model is Faster R-CNN [11], which has become a popular choice 

among researchers due to its ability to detect objects with high accuracy while maintaining a fast detection speed. This review paper 
explores the latest Faster R-CNN-based models and their applications, providing a comprehensive wisdom of the existing shape of object 
detection in computer vision and its potential impact on various industries. Additionally, the paper discusses several other object detection 

ideals, including Sparse- RCNN, Cascade-RCNN, Loss-Guided Attention RCNN, Global Context Aggregation RCNN, iFS-RCNN, and 
HRRCNN, and their unique characteristics and advantages. 

Index Terms—Sparse R-CNN, Cascade R-CNN, LGA-RCNN, GCA RCNN, iFS-RCNN, DeFRCN, and HR RCNN 

 
I. INTRODUCTION 

Computer vision is a rapidly evolving field with significant advancements in recent years. The latest developments in com- puter 

vision techniques have brought about faster and more accurate object detection models. With the growing need for efficient 

and reliable object detection, the latest Faster R-CNN- based models have become an important area of research. The origin 

of Faster R-CNN [9], [10] can be traced back to the need for faster and more accurate object detection. Since its inception, 

Faster R-CNN has become a popular choice among researchers due to its ability to detect objects with high accuracy while also 

maintaining a fast detection speed. Its development has undoubtedly helped move the field of computer vision forward. This 

review paper discusses the latest Faster R-CNN-based models and their applications. By examining these models, it hopes to 

provide a comprehensive wisdom of the existing shape of object detection in computer vision and the potential impact it can 

have on diverse industries. 

Object detection is a fundamental requirement for many computer vision applications  that  have  found  applications in 

various fields, including robotics, autonomous  vehicles, and augmented reality. Convolutional-neural-networks have shown 

remarkable progress in object detection in recent times. However, traditional object detection methods have several limitations  

that  pose  a  challenge  for  object  detection  in complex scenarios. To address these challenges, researchers have proposed 

several object detection models, each with its unique characteristics and advantages. In this review paper, it discusses seven such 

models, namely Sparse R-CNN, Cascade R-CNN, Loss-Guided Attention RCNN (LGA-RCNN), Global Context Aggregation 

RCNN (GCA RCNN), ifs-RCNN, DE- FRCN, and HR RCNN. Sparse R-CNN [8] was developed to rethink the necessity of 

dense prior in object detection, which suffers from limitations such as repetitious results, heuristic assignment rules, and 

sensitivity Regarding the dimensions and shape of anchor boxes. The authors hope that their work could inspire exploring the 

next generation of object detec- tors. Cascade R-CNN [6] was developed to investigate The difficulty of creating precise 

object algorithms detectors that generate minimal false positives in close proximity. The model has several stages, each with a 

higher iou threshold, to improve detection accuracy. The LGA-RCNN [4] model integrates a loss-guided attention mechanism 

to emphasize discriminative regions of objects and improve detection performance. GCA RCNN [5] was developed to extract 

global features for the roi head, in which Inputs are cropped from the overall feature map in a partial manner. The model fuses 

global context and local features to boost and polish global context information.defrcn [1] is a model that has been proposed to 

overcome the shortcomings of Faster R-CNN, such as its failure to take into account few-shot scenarios and conflicts between 

its components, in order to enhance the performance of few-shot object identification. These tasks become challenging when 

there are few training examples available for new classes or When training on both base and new classes is not feasible due 
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to time constraints. To address these challenges, the ifs- RCNN [3] model was developed to learn from an infrequent training 

instances of new classes while not forgetting the previously learned knowledge of the base classes. On the other hand, the 

Hierarchical Relational framework  for  object detection HRRCNN [2] was developed to rectify the shortcomings of convolutional-

neural-networks(convnets) in explicitly modeling as well as reasoning about contextual relationships in images. The HRRCNN 

model integrates three types of contextual relationships - pixel connections, scale dependencies, and object  associations-  in  

a  unified  model to improve object detection performance. This review paper  

 

explores these models and their causes for development in greater detail. 

The writing is organized into three leading units. The first unit provides a synopsis of different Faster R-CNN algorithms for 

object detection, including, DEFRCN, HR-RCNN, ifs- RCNN, Global Context Aware RCNN, LGA-RCNN, Cascade R-CNN, 

and Sparse R-CNN. The second unit compares the performances of these algorithms. Finally, the third section presents the 

study’s conclusion, summarizing the findings and suggesting future research directions for improving object detection 

performance. 

II. METHODS 

A. Revisiting faster rcnn 

Faster R-CNN is a two-stage grouping design that  em- ploys three  mechanism  blocks  for  end-to-end  training  and a joint 

convolutional backbone [15] for retrieving general- ized features, an effective Region-Proposal-Network (RPN) for producing 

class-agnostics proposals, and a task-specific RCNN head for carrying out class-relevant classification and localization. In 

further detail, the input picture is delivered to the RPN and RCNN modules in parallel after being processed into the backbone, 

which creates a high-level feature map. Second, RPN begins a small number of high-quality region recommendations by 

concurrently identifying and regressing a set of scale-varying anchors from the feature map. Next, RCNN conducts a box 

classifier and a regressor for enhancing the item classification probabilities and bounding box refine- ment based on the collective 

feature map and suggestions and RoI pooling, which combines individual region-of-interest into such a set dimension of the 

feature map. 

B. DEFRCN: A Few-Shot Object Detection Method based on Decoupled-Faster-RCNN 

Current detection frameworks, such as Faster R-CNN, often need help in scenarios with limited data and when dealing with 

multi-task learning [14] and shared backbone challenges. It proposes a new, efficient architecture called Decoupled Faster R-

CNN (DEFRCN) to address these issues. In particular,  It  enhances  Faster  R-CNN  by  incorporating a Gradient-Decoupled-

Layer(GDL) for multistage separation and a Prototypical-Calibration-Block(PCB) for multitask sep- aration. The model is 

illustrated in the accompanying Fig. 

1. The Gradient-Decoupled-Layer is an innovative deep layer that alters the feature propagation and gradient computation 

procedures to separate it is preceding and succeeding layers. The Prototypical-Calibration-Block is a classification model based 

on an offline prototypes model that utilizes proposals from the detector as information and improves the calibrating classification 

scores using pairwise comparisons 

C. HRRCNN: Novel Hierarchical-Relational-Reasoning Ap- proach 

Extraction of feature pyramids is accomplished through a backbone network and generate region proposals for an image. 

Instead of processing features computed for each region of the  

 
 

Fig. 1.  The architecture of DeFRCN. 

 

image separately in a box head, in-between the feature pyramid and box head, the HR-RCNN introduces a hierarchical 

relational reasoning [16] (HR) component. This component retains three relational reasoning elements: a pixel, scaled, and region- 
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of-interests graph. To make the model more efficient, It uses a novel graph-attention-module (GAM) that can gather intake 

from different types of heterogeneous graphs by computing attention weight based on the quantifying the semantic [17] 

and spatial proximities of nodes . The subsequent Fig. 2 depicts the given model. This empowers the model to yield a more 

sophisticated rendering of the image. 

 

 
 

Fig. 2.  The HR-RCNN structure. 
 
 

D. iFS RCNN: Segmentation of Few-Shot Instances with In- cremental Learning 

In order to ensure optimum efficiency on all old and fresh classes, this model presents a technique for incremental few- 

shot instance segmentation in which new object classes are presented when training instances of old classes are not there. 

The procedure constructs the Mask-RCNN framework by providing an untried class classification established on the probit 

operation, which addresses the lack of training examples for new classes through Bayesian learning [18]. The paper proposes 

a novel bounding box predictor guided by uncertainty estimation. It estimates the uncertainty in  localization  on new classes 

and uses it to refine bounding box predictions and height the loss. It feeds a new bounding-box of the calculated uncertainty 

together with the ROI-aligned pooled feature map. The segmentation head then receives the refined bounding box. A new 

loss is created to penalize errors on training examples with specific bounding-box predictions more severely by being designed 

to be less for extremely uncertain predictions described in Fig.3. 

E. Global Context Aware RCNN for Object Detection 

The proposed system is contextually conscious and facili- tates the integration of global context information with specific 

information from Regions of Interest (ROIs) in a two-stage object detection network. In traditional two-stage methods, 

 
TABLE I FASTER R-CNN ALGORITHMS 

 
S.no Topic Year 

1 DeFRCN: (A Few-Shot Object Detection Method based on Decoupled-Faster-RCNN) 2021 

2 HRRCNN: (Novel Hierarchical-Relational-Reasoning Approach) 2021 

3 iFS RCNN (Segmentation of Few-Shot Instances with Incremental Learning) 2022 

4 Global Context Aware RCNN for Object Detection 2020 

5 LGA-RCNN: (Loss-Guided Attention for Object Detection) 2021 

6 Cascade R-CNN 2017 

7 Sparse R-CNN 2021 
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Fig. 3.  The iFS-RCNN structure. 
 

the initial stage (rpn head)  separates  the  foreground  from the background and forecasts the anchor box’s regression coefficient. 

The second stage (roi head) forecasts the specific category of RoI and computes to enhance the precision of the bounding box. 

An offset value is employed. It fine-tunes the features using global statistics for the rpn head to enhance the network’s global 

feature recognition capabilities. Nevertheless, implementing a more elaborate design for extracting global features for the 

cropped features of the full feature map is employed in the R0I head. Our method employs the global context information 

extracted from diverse levels of the fea- ture pyramid in the model by merging them through thick connections in the R0I 

head, generating higher-dimensional global descriptors using The module designed to incorporate contextual information, as 

illustrated in Figure 4. Furthermore, like FPN [19], It uses shared, fully connected several layers to extract features at different 

processing stages. Moreover, ultimately merge prediction information from these stages to make the final decision. 
 

 
Fig. 4.  Visual depiction of GCA RCNN. 

 

F. LGA-RCNN: Loss-Guided Attention for Object Detection 

LGA-RCNN is a proposed method that uses a Loss-Guided Attention  (LGA)  module  to  identify  critical  regions  of  an 

object, which are then fused with global information for improved classification and localization. The LGA module leverages 

a k Gaussian architecture to generate masks that highlight the most informative regions in the R0I feature maps. It is supervised 

by an additional classification loss to ensure optimal locations. LGA modules are employed to predict rep- resentative regions 

and highlight them to enhance classification accuracy. By combining highlighted features with the first RoI feature, an 

improvement in both class-ification and regression is achieved, as shown in Fig. 5. The fused RoI feature maps combine local 

and global information to improve detection results, and the Gaussian masks [20] also focus on the marginal regions of the 

object to enhance location accuracy. 

 

 
 

Fig. 5.  Illustration of LGA R-CNN. 
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G. Cascade-RCNN: SOTA Object Detection 

A novel detector architecture called Cascade R-CNN has been presented to deal with the problem of precise object 

detection. It is an R-CNN extension with many stages, with detector stages further down the cascade, more discriminating 

against nearby false positives. Resampling gradually raises the quality of hypotheses, ensuring an equal-sized positive 

training set for each detector and reducing overfitting. The subsequent R-CNN stage in the cascade utilizes the output 

of the previous stage for training. Three acute effects of this cascade learning on detector training are decreased likelihood of 

overfitting at  high  IoU  thresholds  [21],  the  optimality of deeper stage detectors for higher IoU thresholds, and an increase 

in the understanding efficiency of Regression of bounding box parameters are enhanced in the later stages of the model. 

Refer to Fig. 6 below for a depiction of the model. 

H. Sparse RCNN 

Sparse R-CNN is a method for detecting entities in illus- trations that strictly utilizes sparsity. In several works, the 

TABLE II COMPARISON OF THE METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 6.  A graphical representation of Cascade R-CNN. 

 

emphasis on dense object candidates is pronounced in object detection. Each grid of the image feature map with dimensions H 

x W contains a predetermined set of k anchor boxes. To perform classification and location, Rather than generating dense 

object candidates, it employs a sparse set of learned object proposals with a fixed length of N to feed into the object 

recognition head for object recognition purposes. Fig. 7 below illustrates the model. In Sparse R-CNN, all efforts associated 

with the design and assignment of labels to object candidates are completely avoided by restricting the number of handcrafted 

object  candidates  and  utilizing  a  fixed  set of N (100) learnable propositions instead. Final predictions are immediately 

Methods AP AP50 AP75 APs APm APl 

DeFRCN 41.9 62.3 45.1 22.3 46.6 57.8 

DeFRCN 
+ GDL 

36.5 57.6 39.2 19.8 41.7 50.3 

HR-RCNN 
(R101-DCN-FPN) 

47.7 68.2 51.7 30.8 50.4 59.4 

HR-RCNN 
(R101-FPN) 

44.9 65.1 48.4 26.7 47.6 56.5 

GCA-RCNN 
Double-Head (GCA) 

42.1 63.0 45.9 24.4 45.2 53.2 

GCA-RCNN 40 61.6 43.5 22.8 43.2 50.3 

Cascade-RCNN with R1O1 42.8 62.1 46.3 23.7 45.5 55.2 

Sparse-RCNN with RX1O1 46.9 66.3 51.2 28.6 49.2 58.7 

Sparse-RCNN with RX1O1 and DCN 48.9 68.3 53.4 29.9 50.9 62.4 

Sparse-RCNN with RX1O1 and DCN X 51.5 71.1 57.1 34.2 53.4 64.1 
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output without unnecessary post-procedure suppressions. 

 
 

 
 

Fig. 7.  Sparse RCNN in a nutshell. 

III. COMPARISON OF THE METHODS 

 

Table 2 compares several models established on Faster R- CNN for object recognition tested on the COCO [13] dataset. The 

measurement metrics used are average precision [25] (AP), AP50, AP75, APs, APm, APl, representing the precision at different 

intersections of union (IOU) thresholds and for vari- ous object sizes. The DeFRCN model with GDL improves the consistency 

of Faster R-CNN and achieves better productivity than baselines. The HR-RCNN with ResNet-101 backbone and a 2x training 

scheme achieves an overall AP of 44.9 while using deformable ResNet-101 as the backbone increases the AP to 47.7. The 

GCA-RCNN with FPN baselines achieves an overall AP of 40.0, while the Double-Head RCNN [22] strategy achieves an 

overall AP of 42.1. A total AP of 46.9 is achieved by sparse R-CNN with ResNeXt-101(RX101) [24] in its  pure form,  48.9 

with  DCN [22],  and 51.5  with ad- ditional test-time augmentations. Using COCO-style Average Precision, Cascade R-CNN 

with ResNet-101(R101) [25] as its base achieves a total AP of 42.8. These models show that to achieve better detection 

accuracy and inference speed and satisfy the real-time requirements of video processing, deep learning-based object detection 

models require an improved architecture. 

 
IV. CONCLUSION 

 

A comprehensive look delves into the world of object detection and provides an in-depth  examination of various models 

constructed using Faster R-CNN. The comparison of these models on the COCO dataset reveals that Sparse R- CNN reigns 

supreme with an impressive overall AP of 51.5. The article sheds light on the  architecture  of  each  model and the improvements 

made to overcome the challenges of speed and accuracy. As object detection is a complex problem, deep learning models must 

continuously strive to  improve their architecture to meet the demands of real-time video processing. With advancements in 

technology and innovative approaches, we can expect even greater progress in the field of object detection. 
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