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Abstract— Farmers are becoming more and more 

interested in Precision Agriculture's site-specific weed 

management. This study 16 classification methods using deep 

learning that evaluated the SVM model to categorise weeds and 

groundnut crops using RGB photo texture data. 3000 RGB 

photographs of groundnut crop and weed samples, including 1200 

shots of groundnut crops and 1800 photos of weeds, were obtained 

from the greenhouse. This study suggests the EM-YOLOv4-Tiny 

weed identification model, which is based on YOLOv4-TinyIt 

contains techniques for focus and multiscale detection. We 

identified the most crucial features for the prediction models using 

the ReliefF feature selection approach. In order to classify the 

various types of crops and weeds, deep learning classifiers SVM 

and VGG16 were utilised (Celosia argentea, Leucas aspera, 

Arachne racemose, Cyperus rotundus, and Amaranthus viridis). 

To assess model performance and data reliability, accuracy, f1- 

score, and Cohen's kappa coefficient were utilised. All SVM model 

classifiers had failed in comparison to the VGG16 model classifiers. 

The findings revealed that the VGG16 model classifier's average 

f1-scores ranged from 95% to 98.5%. The VGG16 Weeds-Crop 

classifier gave the groundnut class a 100% f1-score, which is 

exceptional for the development of groundnut crops. This paper 

uses a deep learning system to provide potential weed management 

outcomes for precision agriculture at specific sites. 

 

Keywords—Deep Learning, Machine Learning, Precision 

Agriculture, Weed Management, Image Classification, YOLOv4- 
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I. INTRODUCTION 

Native weeds naturally develop in agricultural regions. Weed 

and crop competition for resources including moisture, air, 

light, and space may result in decreased agricultural yields. 

Weeds in crop fields must be kept under control in order to 

maintain agricultural production. Due to the crop being present 

in the field, It may be difficult to manage post-emergence 

weeds with cultivators and blanket rate herbicides. 

Preemergence weed management is possible using these tools. 

Weeds can reduce yields by 37% when they are neglected, 

while diseases and pest animals can reduce yields by 16% and 

14%, respectively [1]. Weeds limit the amount of groundnut 

grown in fields used for conventional crops by 24% to 43% 

annually [1,2]. Early weed control is always required for 

increasing production and lowering the weed seed bank in the 

soil, according to studies [3, 4]. By maintaining effective weed 

control and minimising environmental consequences, the crop 

must be protected, it may be required to manually remove weeds 

that are close to the groundnut plants or to apply pesticides to 

kill them. 

Weeds have been eliminated from agricultural areas 

utilising manual, biological, mechanical, electrical, and 

chemical weed control techniques. These techniques have been 

shown to be traditional, circumspect, and unfocused [5]. To 

address the problems with the current weed control systems, 

which include being time-consuming and expensive, by 

enhancing system performance and lowering system energy 

input, site-specific weed management, however, calls for more 

precise and effective weed control processes. Yet, weeds that 

are inside of rows might not be entirely eliminated by 

traditional gear. Also, a predetermined amount of the pesticide 

is evenly distributed throughout the whole field, covering 

weeds and crops alike. Site-specific herbicide applications may 

not provide the same level of environmental protection as 

comprehensive ones [6]. As a result, a pesticide that is only used 

in challenging areas may improve precision while increasing 

input costs and creating environmental issues [7]. The first steps 

in site-specific weed management are weed identification and 

classification. Machine learning and deep learning techniques 

enable image-based weed categorization [8–10]. 

In a variety of fields, including Machine and deep learning 

methods have been employed for groundnut crop identification 

[11,12], classification of meat cuts [13], prediction of crop yield 

[14], classification of plants [15], and classification of plant 

illnesses [16]. the classification of weeds [10,17-19] has a lot of 

potential. Only a few of the image modalities that can be utilised 

to classify weeds include RGB, hyperspectral, and multispectral 

images. The RGB picture acquisition system was used for this 
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investigation due to its ease of setup. These techniques make it 

possible to take high-quality pictures and to classify the pictures 

with 99% accuracy [10]. SVM, a machine learning technology, 

has been utilised to categorise weeds because of its excellent 

performance and accuracy of above 98% [20–22]. For ML 

algorithms to work more efficiently, feature engineering and 

feature extraction are needed [23]. There is evidence that the 

SVM weeds classification problem can be resolved using 

features like as texture characteristics, shape features, colour 

features, and cell features [20–22]. Although their outstanding 

performance, shape characteristics have some drawbacks, one of 

which is that extraction calls for particular circumstances. Plants 

must be in an earlier growing stage to prevent overlap from 

affecting sampling precision. Thus, texture, colour, and cell 

qualities are preferred above form factors when one or more 

weeds grow at the same time and have overlapping leaves. 

Contrary to shape qualities, texture qualities don't require that 

the leaves' precise shape be maintained. For instance, if several 

of the plant's leaves are gathered as one unit, shape 

characteristics like area, perimeter, or primary axis radically 

change. An image or a section of an image's local spatial 

organisation and local contrast are determined by the textural 

feature known as local binary pattern (LBP). LBP is well-liked 

due to its simple implementation and superior feature extraction 

classification accuracy [24]. So, it is not required for the leaves 

on isolated  

 
Figure 1. Shape and color of six weeds. (a) Portulaca oleracea, 

(b) Eleusine indica, (c) Chenopodium album, (d) Amaranth 

blitum, (e) Abutilon thophrasti, (f) Calystegia hederacea. 

plants to have an ideal shape. When extracting features from 

any images, background noise must be removed. Hence, the 

green portion of the image was eliminated utilising methods for 

processing images. Given the obvious disparity between dirt 

and plants, Woebbecke et al. came to the conclusion that the 

ExG technique was the most effective among the several 

vegetation indicators investigated. The excess green method 

was created using Python's ImageJ 1.53j application programme 

interface (API), an open-source tool for performing scientific 

picture analysis [27,28]. 

The feature extraction techniques were carried out using the 

Scikit, OpenCV, and Python 3.8 packages [29,30]. Due to 

Python's ecosystem's increased development for online 

applications, image processing, and data research, it was picked. 

Using the Python OpenCV API, the preprocessed image was 

turned into a grayscale image. The grayscale image was used to 

extract two different categories of texture characteristics: Gray-

level co-occurrence matrix features and local binary pattern 

features. 

Even if numerous weeds or crops may grow at the same time 

and overlap one another, Instead of using the shape- based 

method, The extraction of texture features has been used. The 

extracted feature values and data labels were used to build a 

CSV file. 

In computer vision, LBP features have proven to be 

reliable and capable [22]. This approach was first put forth by 

Wang & He in 1990 [31]. The RGB image's grayscale 
 

 

counterpart was initially used to get the LBP characteristics. 

The Python scikit-image module's number of points (n) and 

radius inputs were used to extract LBP texture characteristics 

(r). The number of points is the same as the quantity of 

quantified set points in angular space that are circularly 

symmetric. A circle's radius (the operator's spatial resolution) is 

equal to its breadth. The characteristic histogram was then made 

using the binary pattern. The feature was created by combining 

three different sets of parameters. (16 points and 2 radii), eight 

points and one radius (LBP8,1), and sixteen points (LBP16,2), 

and twenty-four points and three radii (LBP24,3) were the 

parameter values that produced features with two points plus 

(n+2) features (LBP24,3). In the machine learning model [22], 

the combination performed better than the single LBP features 

vector, hence it was chosen as the replacement. 

The basic texture-based feature extraction method 

known as gray-level co-occurrence matrix (GLCM) features was 
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first introduced by Haralick et al. in 1973 [22,24,30]. In contrast 

to LBP, the feature produced by this method is a world wide 

representation of the texture. The GLCM features were 

extracted using Python's scikit-image greycomatrix and 

greycoprops modules [32]. The three greycomatrix parameters 

were set to 1, 2, 3, 4, 0, 45, 90, 180, and 256, respectively, for 

distance, angle, and level count (256 for 8 bit). A four- 

dimensional gray-level co-occurrence histogram was produced 

as a consequence. Then, each crop and weed image had one of 

five types of GLCM features: contrast, dissimilarity, area 

second moment (ASM), energy, and correlation. There are 16 

characteristics (4 in each distance and angle category). 
 

 
Figure 3 

After feature selection, a support vector machine 

(SVM)-based machine learning classifier was built(Fig. 5). 

Using the scikit-learn API, data were divided into two groups 

for the purpose of building the model: training (80%) and 

testing (20%) [33,34].  

Figure 4. Progress in stem cell research 

The training phase did not involve the use of testing 

datasets. The scikit-learn Standard Scaler API was used to scale 

the training and test sets of data [33,34]. Scaling was put into 

place because performance might be greatly enhanced [35]. To 

obtain the optimal kernel and parameters, hyperparameter 

optimization was carried out utilising radial basis and linear 

kernel with different gamma and regularisation (C) values. This 

was accomplished using the 5- fold cross-validation feature of 

the GridSearchCV scikit-learn API. 
 

The approach was assessed using performance criteria like 

accuracy, precision, recall, f1-score, and kappa score. Equation 

defines accuracy as the ratio of correctly expected observations 

to all observations (1). The total of the true positive (TP) and 

true negative (TN) observations represents the observation that 

was correctly anticipated (TN). One observation is made up of 

all TP, TN, FP, and false negatives. Precision is defined as the 

ratio of correctly anticipated positive observations to all the 

observations predicted by the equations (2). The ratio of 

accurately anticipated positive observations to all of the actual 

class observations is how Equation defines a recall (3). The 

harmonic evaluation of accuracy and recall known as the F1-

Score (Equation (4)). A low accuracy and recall value of 0 or a 

high precision and recall value of 1 are both possible for the f1-

score. (Poor recall value or precision). Statistics regularly 

employs the kappa score, whose values range from 1 to +1 [36], 

to assess inter-rater reliability. Each crop and weed class 

forecast was visualised using a confusion matrix. The 

aforementioned metrics and confusion matrix were evaluated 

using the Python scikit-learn modules [37,38]. 

 

The input layer, the backbone network, the FPN, and 

the output prediction layer are the four components that make 

up YOLOv4-Tiny. The size of each of the submitted 

photographs was scaled consistently to 416416. From 

CSPDarkNet53-Tiny, the features were retrieved, and the FPN 

processed them for feature fusion. The output prediction layer 

contained the target's position and category information. Two 

modules—CSP module and a CBL module—make up the 

majority of CSPDarkNet53-Tiny [39]. The batch normalisation, 

convolutional layer, and Leaky Relu [40] activation function 

make up the CBL module. It serves as the smallest module in 

the entire network topology and carries out sampling and feature 

control splicing. The input feature map may be divided into two 

parts by the CSP module, a more complex type of residual 

network structure. Following some processing, the secondary 

component and primary component are fused together in a 

series while the primary component stacks the waste. CSP1, 

CSP2, and CSP3 are the three CSP modules that might be 

present in CSPDarkNet53- Tiny. These concerns were resolved 

by combining the upsampling channel dimension discoveries 

with the CSP2 layer output characteristics to produce an output 

that was optimised for the detection of smaller targets. To 

accomplish this, the FPN was given access to the CSP2 layer. 

Figure 4 depicts the network architecture of EM-YOLOv4-
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Tiny. 

 

II. LITERATURE SURVEY 

Sunil G C et al [1], Deep learning-based classifiers 

were able to classify weeds and six different species of crops 

individually with an average f1-score value of more than 94%. 

The deep learning-based Weeds-Corn classifier outperformed 

all other species, scoring 100% of the f1 points for the corn 

class. The weed control system should treat all crops as weeds 

and disregard any weeds that are crops in order to achieve the 

best results. In the future, the use of more advanced deep 

learning algorithms may improve the effectiveness of 

categorization models with additional weed and crop species. 

Shangbin Yang et al [2], The network suggested in this study is 

better at spotting weeds in peanut fields, but certain significant 

issues still require further study. First off, only weeds in the 

stage of peanut seedlings were used in the study, and they were 

only gathered in Henan Province, China. Future studies will 

concentrate on learning more about weeds in peanuts at 

different phases of growth and will make an effort to cover as 

many geographical locations as is practicable. In addition, 

while the network used in this study increases the model's 

recognition accuracy in contrast to the original YOLOv4-Tiny 

network, it does so at the expense of a small amount of model 

volume. 

H Santhi al [3], In this study, Using dated weights in 

fully connected layers and dated weights in convolutional 

layers, it provides a complete evaluation of five different 

convolutional architectures. The minimum training, validation, 

and testing accuracy for GWD are, in percentage terms, 

84.30%, 90.10%, and 89.30%, respectively. The highest 

percentages for the accuracy of GWD training, validation, and 

testing are 95.63, 96.5, and 95.39, respectively. The VGG-19 

and ResNet-101 yielded the lowest and highest findings, 

respectively. 

Trupti R. Chavan et al [4], This effort aims to identify 

different plant species that are crops and weeds in order to 

manage agriculture. It is helpful for weed control techniques 

that increase agricultural productivity. It is suggested that this 

classification be applied to AgroAVNET, which was created 

from VGGNET and AlexNet. The normalising technique was 

motivated by AlexNet, while the depth of filters was chosen 

based on VGGNET. The combination of batch normalisation 

and filter depth selection has enhanced AgroAVNET's 

performance. In the subject of ground robotic applications in 

agriculture, they have developed a distinctive paradigm for data 

augmentation for image semantic segmentation. In order to use 

the RICAP data augmentation approach effectively for the task 

of crop and weed semantic segmentation, they specifically 

propose two novel modifications to the existing framework. 

This technique was initially developed for picture classification 

data augmentation. 

III. METHODOLOGY 

A. Weed and crop image acquisition 

The weed was tracked from its earliest growth phases 

until it reached a height of 12.5 cm to collect the RGB photos. 

The weeds and crops were methodically photographed with 

variable lighting and camera height during the growth season. 

Through the image capture process, a variety of 

photographs were gathered in order to develop the machine 

learning classifier. Horseweed, a form of weed, received the 

most shots of any weed species with 681, and water hemp, which 

received the fewest shots of any weed species, with 446. Canola 

had the most photographs, whereas sugar beets had the fewest of 

any crop species (336). (203). The greenhouse's abundance of 

weeds and agricultural plants is to blame for this discrepancy. 

 

B. Preprocessing: 

When extracting features from any images, background 

noise must be removed. Hence, Using image processing 

methods, the image's green portion was cropped out. To extract 

green vegetal material, the excess green index (ExG 

= 2g-r-b) approach was applied. Woebbecke et al. [27] created 

this technique to distinguish between soil and plants in a single 

image [28]. Given the obvious disparity between dirt and 

plants, Woebbecke et al. came to the conclusion that the ExG 

technique was the most effective among the several vegetation 

indicators investigated. The excess green technique was created 

using the Java application programming interface (API)-based 

open-source scientific image analysis tool ImageJ 1.53j [29, 

30]. It was discovered that 35 was the optimal value for the 

provided image datasets (Grayscale values) when different 

random numbers between 0 and 255 were verified against the 

excess green threshold value. An image's RGB pixels each have 

a predefined ExG value. Given that the image has been cropped 

to eliminate the whole backdrop, ExG scores below 35 indicate 

background pixels. 

 

C. Gray-level co-occurrence matrix features extraction: 

In contrast to LBP, the feature produced by this method is a 

global representation of the texture. Python's scikit- image 

greycomatrix and greycoprops modules were used to extract 

GLCM features [33]. Distance, angle, and level count (256 

for 8 bit) were the three greycomatrix parameters that were set 

to 1, 2, 3, 4, 0, 45, 90, 180, and 256, respectively. A four- 

dimensional gray-level co-occurrence histogram was 

produced as a consequence. In that order, these four 

components were levels, levels, number of lengths, and 

number of angles. Each crop and weed image yielded five 

distinct GLCM characteristics: contrast, dissimilarity, area 

https://sciprofiles.com/profile/author/dklpbE9jRnZFSVRUcTBDNnp5NUdDajViMG9laTAvb01pMFRsb0NWU2Y2cFZsNkpEc1lidFdpVEd4QjJlaWRZaA%3D%3D
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second moment (ASM), energy, and correlation. The 

following section goes through these characteristics.  
 

 

D. Classification of marijuana and peanuts using a deep 

learning system. 

The crop-weeds model has 125,445 trainable 

parameters as opposed to the weeds model's 14,714,688 non- 

trainable parameters, which had 100,356 trainable parameters. 

After training and validation, the model was put to the test on 

test data to see how well it generalised to fresh test data. We 

used the Python APIs Tensorflow and Keras for the training, 

validation, and testing of deep learning models. 

E. Binary feature extraction: 

In computer vision, it has been demonstrated that local 

binary pattern (LBP) features are dependable and effective [22]. 

In 1990 [34], Wang & He presented this approach. Initially, 

the RGB image's grayscale rendition was used to extract the 

LBP characteristics. The characteristic histogram was then 

made using the binary pattern. A support vector machine 

(SVM)- based machine learning classifier was developed after 

the characteristics were chosen. The scikit-learn API was used 

to divide the data into two groups for the model's development: 

training (80%) and testing (20%) [39,40]. The training step did 

not involve the usage of testing datasets. The Standard Scaler 

scikit-learn API was used to scale the training and test sets of 

data [39, 40]. Scaling was done even though performance may 

be considerably improved [41]. SVM model training and 

testing procedures are shown in Figure 5. After feature 

selection, input features were obtained, and train and test data 

sets were created from the data. Instead of using train data, test 

data were used to evaluate the model's performance.  

IV. RESULTS 

There are numerous weed species in peanut fields, 

some of which are physically smaller than others. Smaller 

targets are commonly misdetected by the YOLOv4-Tiny 

standard network. According to comparison results between 

EM-YOLOv4-Tiny and YOLOv4-Tiny using the same test set, 

the EM-YOLOv4-Tiny outperformed the precision rates of the 

original network by 11.15 and 7.43%, and it accomplished 

recognition accuracy rates for smaller targets and all targets of 

89.75% and 94.64%, respectively. By including the position 

and details of the shallow-layer feature, the rebuilt network 

enhanced its capacity to recognise microscopic weeds. This was 

accomplished using the channel attention mechanism, which 

reduces loud sounds in smaller receptive fields. To enable 

information sharing between channels, the SE network uses a 

complete connection, in contrast to the ECA attention network, 

which increases processing effort and results in loss of features 

as a result of dimensionality reductions. Using the global 

maximum pool, the CBAM network, a convolutional block 

attention module, augments the channel dimension with 

location data. Instead of long-range dependent information, it is 

restricted to local range information. Compared to the 

performance indices of the prior model, each performance 

indicator rose as additional attention processes were added. The 

ECA network may be better suitable for the model used in this 

experiment given the ECA attention module's superior 

performance over the other two. On the other hand, the attention 

method network is more responsive to input specifying the 

object to be recognised after the weights have been modified. 

The ECA network displays darker tones on the little target 

weeds in the images, indicating more attention, in comparison 

to the feature visualisation findings of the other two attention 

networks utilised in this study. 

 

Figure 6. Effects of model recognition in various situations. 

V. CONCLUSION AND FUTURE WORK 

Many weed kinds in peanut fields can be rapidly and 

precisely identified with the EM-YOLOv4-Tiny weed 
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identification technology. Multiscale detection and the 

attention approach were introduced based on YOLOv4-Tiny. 

To improve the model's ability to recognise small objects, the 

prediction box was screened using the soft-NMS approach and 

the training loss function, the CIoU. The suggested model 

outperforms Faster-RCNN, YOLOv5s, YOLOv4, and Swin- 

Transformer in terms of recognition accuracy. The EM- 

YOLOv4-Tiny model also featured a volume of 28.7 M and a 

single detection time of 10.9 ms, making it appropriate for 

embedded development of intelligent weeding robots. Out of 

all the deep learning classifiers, the Weeds-Corn classifier 

achieved a 100% f1-score for the species of corn. The weed 

control system should treat all crops as weeds and disregard any 

weeds that are crops in order to achieve the best results. In the 

future, the use of more advanced deep learning algorithms may 

improve the effectiveness of categorization models with 

additional weed and crop species. To perform the accurate 

weeding in the peanut field, a smart spraying instrument will be 

chosen in further work, and the developed model will be 

transferred to an appropriate embedded device for testing. In 

order to help farmers better understand field data and decide on 

the best course of action, the model will also be integrated into 

smartphone applications. 
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