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Abstract—The Remaining Useful Lifetime (RUL) is forecast 
using data-driven proposed simulation approaches based on the 
health indicator (HI). The HI monitors sensor data, like vibration 
signals, to determine the health of machinery or components. 
The Hilbert-Huang Transform (HHT) is utilized in the suggested 
strategy with some time domain features to extract new bearing 
health indicators that can monitor the deterioration of crucial 
bearing components are derived from stationary and nonstation- 
ary vibration signals. The extracted features are fused together 
to construct the HI. In the second module, a prophet algorithm 
is employed to predict the future trend of the HI until it reaches 
a predefined threshold. To determine the RUL, the prediction 
start time is subtracted from the prediction end time. Vibration 
data from tests on rolling element bearings with accelerated 
degradation are used to illustrate the suggested technique. The 
outcomes of the predictions support the effectiveness of the 
suggested method for predicting machinery’s RUL. 

Index Terms—Remaining Useful Lifetime, Hilbert-Huang 
Transform, vibration signals, predefined threshold. 

I. INTRODUCTION 

Bearings are a crucial component in machinery as they provide 

support for axial and radial loads on rotating shafts. Mechanical parts 

naturally deteriorate as they age, and the operating environment 

affects the behavior. Ball bearings are a component that is included 

in practically all rotating machinery in industrial workplaces and are 

frequently linked to premature failures. These parts’ sudden failure 

can be critical sufficient to terminate a manufacturing system entirely. 

Because bearings are one of the most crucial components of 

rotating hardware, bearing diagnostics is an important field of 

signal processing. Statistics show that failures in bearings account for 

30 % of all failures in rotating machinery. During system operation, a 

variety of rolling bearing problems may develop because of overload, 

inadequate lubrication, and poor installation. Establishing the 

performance degradation indication over the course of a bearing’s 

life is crucial for preventing unexpected failures and implementing 

condition- based maintenance. The definition of RUL is the 

period of 

time starting from the current moment until a system or asset 

becomes inoperable. It is crucial to study conditional-based 

maintenance (CBM), health management, and prognosis to assess 

RUL accurately. Evaluating RUL is vital in making informed 

maintenance decisions to avoid disasters and save on maintenance 

costs. Predicting RUL is necessary to schedule maintenance activities 

in advance, extend life cycles, and pre- vent catastrophic events [1,2]. 

Due to this, there is a growing demand to enhance and develop RUL 

prediction techniques for bearings. [3-5]. Data-driven methods have 

been extensively studied for predicting the RUL of bearings, as 

reported in previous works [6,7]. The framework of these methods 

usually involves these steps: (a) data acquisition, (b) Generating HI, 

and (c) prognostics, which involves predicting the time until failure. 

the accuracy of the HIs plays a crucial role in deter- mining the 

forecasting accuracy of RUL [8]. Synthesized HIs have attracted a lot 

of interest recently, which are typically constructed using data fusion 

techniques. These techniques transform high dimensional statistical 

features, such as vari- ance, root mean square (RMS), kurtosis and 

others, into a one- dimensional HI [9,10]. The classical statistical 

features used for constructing HIs often have varying ranges, 

resulting in unequal contributions to the construction process. For 

instance, several deterioration characteristics and ranges are visible in 

statistical features recovered from vibration signals in the time 

domain [11,12], frequency domain [13], and time-frequency domain 

[14]. To address this issue, to translate the statistical information 

collected from vibration signals into a particular and equal interval, 

normalization techniques like ”Min-Max scaling” are frequently used 

[15,16]. In their work, [17] author have shown the use of HHT and 

the ensemble empirical mode decomposition (EEMD) on vibration 

signals. instantaneous amplitude and instantaneous frequency at 

any time instant are calculated, EEMD was used to get a new 

signal from the original vibration signal that was made up of a group 

of selected intrinsic mode functions (IMFs). The HHT spectrum 
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was then used to recognize the bearing fault. Similarly, Wu et al. 

[18] employed the extraction of HI from the data contained within 

the IMFs by using the HHT and EEMD to determine the 

amplitude modulation of various IMFs. The paper uses a 

combination of HHT and statistical features. In order to eliminate 

noise from the bearings’ vibration, the Empirical Mode 

Decomposition (EMD) technique is utilized, which acts as an 

adaptive noise removal technique. The EMD decomposes the 

complex vibration signals into several IMFs, and the first three IMFs 

are selected for feature extraction. Eight statistical features are 

calculated from each IMF. The IMFs are then transformed into 

Hilbert spectrum using the Hilbert transformation, and two HHT 

features are extracted from the Hilbert spectrum. The most important 

fault features are found out using the correlation metrics. These 

selected features are then fused into a HI through Principal 

Component Analysis (PCA). By analyzing the training data from 

start to failure experiments, a threshold value for the HI is defined. 

When the HI value reaches the threshold, it is assumed that the 

bearing has failed. The time-to-failure prediction for each test 

bearing is made using a Prophet model. The RUL is calculated by 

subtracting the predicted end time with the predicted start time. 

 

II. PROPOSED RUL ESTIMATION METHOD 

The proposed method as shown in Fig. 1 consists of the following 

steps: A. Feature extraction and selection, B. health indicator (HI) 

construction, C. setting a threshold and D. time to failure prediction 

and RUL estimation. 

A. Feature extraction and selection. 

Extracting significant properties from a reduced time-series signal 

facilitates proper training of RUL predictor models. The HHT is a 

new emerging technique of time–frequency signal processing 

designed to analyses nonstationary signals. It has been used in many 

applications, particularly in fault detection and diagnostic [19]. This 

technique decomposes a vibration signal x(t) into several IMFs 

representing the average trend of the signal. These IMFs, obtained 

because of the EMD [20], represent the input signal in specific 

frequency bands. EMD is a technique used for analyzing time series 

signals that are non- stationary and nonlinear in nature. Its core 

principle involves breaking down these signals into a set of IMFs and 

residues. IMFs are component signals that range from highest to 

lowest frequencies and have independent frequency bands, providing 

valuable physical information and enabling multiresolution analysis 

of the original signal. When added up, the IMFs and residual can re-

create the original signal. An example of the IMFs obtained through 

EMD applied to a vibration signal is depicted in Fig. 2. To satisfy 

the EMD conditions, each IMF should have symmetric upper and 

lower envelops, and the number of zero-crossings and extremal 

points should be equal or differ by one. The EMD algorithm follows 

specific decomposition steps to obtain these IMFs from the original 

signal. To ensure compliance with EMD requirements, each IMF 

must meet two conditions: 1) the upper and lower envelopes must be 

symmetrical, and 2) the number of zero- crossings and the number of 

extremal points must be either equal or differ by one. These IMFs are 

obtained by following specific decomposition steps when given a 

time sequence x(t). 

1) Identify all the maximum and minimum points of the raw 

sequence x(t) and then fit out the upper envelope Emax(t) and 

lower envelope Emin(t). The mean value of the upper 

envelope and the lower envelope can be expressed as 

m(t) = 
Emax(t) + Emin(t) 

2 

 
(1) 

2) Compute the difference between the average envelope curve 

(m(t)) and the raw sequence (x(t)), represented by the symbol 

h(t) 

 

 

 

 

 

 

 

 

 

Fig. 1: Overview of the condition assessment method. 

h(t) = x(t) − m(t) (2) 

3) See whether h(t) meets the constraint conditions of the IMF. In 

the event that h(t) is not an IMF, take h(t) as a new input 

sequence and step 1 and 2 are repeated until the 

aforementioned constrain requirement are satisfied. In the 

event where h(t) is an IMF, its is then become a first IMF 

component of x(t) and can be written as 

 

c1(t) = h(t) (3) 
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4) To acquire the residual component r1(t), c1(t) is then removed 

from the original sequence x(t). 

 

r1(t) = x(t) − c1(t) (4) 

5) The foregoing stabilizing procedures are then repeated until 

we get next IMF component c2(t). Thereafter, r1(t) is taken 

into consideration as a new sequence, and the procedures are 

repeated n times. The eventual outcome of EMD is best 

described as 

 

ciA(t) = ci(t) + jciH(t) (7) 

 

ciA(t) = ai(t)e
jθi(t) (8) 

 

 

where ciHi(t) is the Hilbert transform of ci(t) 

Σ H (t) = 
1 

P 

∫ 

c (s)  
1

 
ds (9) 

i=1 

where rn(t) is the residue reflecting the trend term of the initial 

sequence and ci(t) is the ith IMF, i.e. 

Σ 

 
 

 

in which P denotes the Cauchy principal value. 

It is possible to determine the instantaneous amplitude ai(t) and 

phase θi(t) using the polar coordinate from the analytical IMF ci(t). 
They are given as follows: 

 

 

i i 

 
2 

θi(t) = tan
−1 

i

 
ci 

 

 
(11) 

The formula below can be used to determine the instantaneous 

frequency fi(t) from the instantaneous phase θi(t). 

 1 dθi(t) f (t) = 
 

(12) 
i
 2π dt 

The Marginal Hilbert Spectrum (MHS) calculated as fol- lows: 

hi(t) = 

∫ 

hi(f, t)df (13) 

 

Energy and entropy are the features which are extracted from 

Hilbert marginal spectrum. The MHS’s energy can be determined 

using the formula below: 

E = 

∫ ∫ 

|hi(f, t)|
2
 df dt (14) 

where P (f, t) is the normalized MHS at frequency f and time 

t. The entropy (MHS) provides a measure of the uncertainty or 

randomness of the signal’s frequency content over time. Again, 

domain features are also calculated like: 

Root Mean Square (RMS): 

  

RMS = 
N 

2 
N i 

i=1 

(15) 

 

 

 

 

Fig. 2: Decomposed Vibration signals by EMD 

n 

E(t) = n 

x(t) = 
i=1 

IMFi + r (t) (6) 

ai(t) = 
q 
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i Where x
2
 is the i-th sample of a signal and n is the number 

of samples. 

Peak-to-Peak (P2P): 

P 2P = max(x) − min(x) (16) 

After EMD first 3 IMFs are selected for feature extraction. Here, 

The analytical form of an IMF ciA(t), is defined as 

Crest Factor:  

CF = 

 
max(x) 

(17)
 

RMS 
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K =   n i=1  

Kurtosis:  

1 Σn 
 

(xi − mean(x))
4
 

 1 Σn (x − mean(x))2
 2

 

Skewness: 

n i=1 i 

N 3 

S = 
 1 Σ (xi − mean(x))  (19) 

N 

Standard Deviation: 

i=
1 

(std(x))3 

Std(x) = 

r Σ
(x − median(x))2 

  
 

 

 
(20) 

n 

(18) 
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Min, Max and Mean of a signal these are all features are extracted 

and the features having more than 0.5 as correlation coefficient are 

selected to construct HI. 

B. health indicator (HI) construction 

The method used in this study involves constructing a HI 

using PCA. To construct a HI using PCA for variable reduction. The 

first step in this process was to address the issue of variables measured 

on different scales, which can cause bias in the model fitting process. 

To mitigate this potential prob- lem, feature-wise normalization using 

Min-Max Scaling was applied before performing PCA. PCA seeks to 

minimize the feature’s dimensionality while retaining most of the 

variability in the data. In other words, It seeks to reduce the original 

set of variables into a smaller set of main components, which 

are uncorrelated variables. This approach can help to identify the 

most important factors contributing to the variability in the data, 

making it easier to interpret and analyze. In this study, The 

characteristics derived from the training bearings were subjected to 

PCA. The resulting principal components accounted for most of the 

data variability, indicating that the transformation was successful in 

capturing most of the relevant information in the data as shown in 

figure 3. To obtain a smooth trend of HI, the researchers used a 

Moving Average (MA) smoothed method. This technique involves 

calculating the average of a subset of data points over a rolling 

window of fixed size, with the window moving forward one 

point at a time. This process helps to eliminate any short-term 

fluctuations in the data, revealing the underlying trend over time. By 

using MA smoothing, the researchers were able to obtain a clear and 

informative HI that accurately reflected the health status of the 

bearings. 

C. Setting a threshold 

The PRONOSTIA platform provides a feature that allows 

researchers to conduct run-to-failure experiments, where tests are 

terminated once the vibration signal amplitude surpasses a 

predetermined threshold of 20g [21]. Through the analysis of 

training data obtained from run-to-failure experiments, we observed 

that the bearings tended to fail at a HI value of approximately 0.2. 

Based on this observation, it is possible to establish the HI value of 

0.2 as the threshold limit as shown in figure 4, beyond which the 

bearings are expected to fail. This threshold provides a reference 

point that can be used to 

 

 

Fig. 3: HI of bearing 1-1 

 

 

monitor the health of the bearings and to identify potential failures 

before they occur. By continuously keeping the eye on the HI values 

of the bearings and comparing them to the established threshold, we 

can identify when the bearings are nearing failure and take necessary 

action to prevent a catas- trophic failure from occurring. Therefore, 

the establishment of a threshold limit helps in making decisions about 

maintenance and repair schedules, and it can also contribute to 

reducing the likelihood of unexpected equipment failure, thereby 

improving the overall efficiency and safety of the system. 

 

Fig. 4: HI plot of bearing 1-1 with set threshold 

 

D. Time to failure prediction and RUL estimation. 

The Prophet model has remarkable accuracy in predicting the 

behavior of time series data [25]. In this particular scenario, the model 

was trained on a set of available data of the HI of a test 

bearing, with the endpoint of this data serving as the starting 

point for the prediction. The model was then deployed to forecast the 

future trend of the HI until it reached a fixed threshold value of 0.2. 

The Fb Prophet model is highly suitable for this application as it is 

specifically designed to 

handle time series data, accounting for trends, seasonality, and other 

effects that are often present in industrial systems. It provides a robust 

and efficient means of predicting the future behavior of such data. 

During the prediction phase, the model continually generated forecast 

values until the HI reached the fixed threshold value as shown in 

figure 5. At this point, the time was noted, which served as the 

endpoint of the prediction. The Predicted RUL was calculated by 

taking the difference between the starting point and endpoint of the 

prediction. The resulting RUL value is a crucial metric used in 

determining the remaining lifespan of the bearing, enabling timely 

maintenance or replacement to prevent catastrophic failure. Predicted 

RUL 
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(
e− ln(0.5)  ,  if E 

= Prediction end time - Prediction start time 

 

Fig. 5: Prediction Plot of bearing 1-3 

 

 

III. EXPERIMENTAL SETUP AND RESULT 

DISCUSSION 

A. Data Set 

The experimental data used in the proposed approach was 

obtained from PRONOSTIA as part of the IEEE PHM 2012 Data 

Challenge [21]. The experiment platform, illustrated in 

regulated shaft speed to quicken the bearing degeneration. On the test 

bearing, there are two accelerated sensors that are lateral to one 

another. The data is sampled at a frequency of 25600Hz, with each 

sample lasting for 0.1 seconds, resulting in 2560 data points per 

sample. The test is stopped whenever the amplitude of the captured 

signal exceeds a set threshold in order to prevent harm. The 

recording interval is 10 seconds. 

B. Result on testing bearings. 

In order to demonstrate the versatility of proposed frame- work for 

estimating RUL, tests on five additional bearings are conducted : 

bearing1-4, bearing-1-5, bearing2-4, bearing2-6, and bearing3-3 as 

shown in Figure 7. 

 

(a) B14 (b) B15 

  

(c) B24 (d) B26 

Fig. 7: Prediction Plots of Testing bearings 

 

C. Evaluation metrics 

Two generally used metrics are employed to compare the review 

methodologies: 

1) Relative Error (Er): 

Er = 100 × 
Tfailure − Tˆf 

ailure  
Tfailure 

(21) 

where Tfailure is the real RUL and Tˆfailure is predicted. A worse 

RUL prediction result is indicated by a higher absolute Er. 

2) Exponential Transformed Accuracy (ETA): The preci- sion that 

was exponentially transformed and proposed in IEEE PHM 2012 

[21]. ETA is an evaluation metric used to differen- tiate between 

major under- and over-predictions of RUL. To avoid more major 

harm to the bearing, underestimation (early warning) is better than 

overestimation (warning post damage). The equation is used to 

express the formula. 

Fig. 6: Experimental setup  
ETA = 

E
r  
5 

e+ ln(0.5) Er 

r ≤ 0 
 

(22) 
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Σ 

Σ  

β 

β i=1 failurei failurei 

β i=1 i 

Figure 6, consists of three primary components: a rotating portion, a 

part for creating deterioration, and a part for collecting signals. A 

radial load force is delivered with a 

20 , if Er > 0 

A greater ETA value indicates a finer RUL prediction outcome. The 

range of the ETA value is 0 to 1. Three additional 

assessment criteria are employed along with the two that test 

prediction accuracy for a particular bearing in order to conduct a 

thorough comparison of various approaches. These three metrics are: 

Average score Smean,CKNOWLEDGMENT 
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Smean = 
1 

ETA 
β 

i
 

i=1 

(23)  
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