
 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 1 
 

Development of Standalone Application using Electron Framework  

Anupam Kushwaha 
1
, Jayashimha S R

2
  

1,2
Master of Computer Application  
1,2

R V College of Engineering 
 Bengaluru,India  

1 
anupamk.mca21@rvce.edu.in,

 2 
jayasimhasr@rvce.edu.in 

 

Abstract—This article discusses the benefits, problems, 

and frameworks involved in the development of 

independent desktop applications using web technology. 

It emphasises the use of web technologies like HTML, 

CSS, and JavaScript to construct standalone apps that 

operate natively on desktop operating systems. Desktop 

apps have their own advantages that tend to overpower 

existing websites depends on the web browser acting as 

the client interface. There are several browsers and they 

differ from each other. They too constant updating, as a 

result of which one browser exists in several versions 

with different functions and capabilities. Sometimes 

certain web applications are not allowed to run in a 

particular web browser due to a lack of compatibility or 

a particular version. There are many browsers available, 

each with different versions and features, compatibility 

issues and limitations that prevent certain web 

applications from running smoothly. To overcome this 

challenge, developers often rely on the Electron 

Framework, a widely used solution for building desktop 

applications. Using web technologies such as HTML, 

CSS and JavaScript, Electron enables developers to 

create standalone desktop applications that can be 

installed and run consistently across all operating 

systems, providing users with a reliable and independent 

user experience without browser limitation. 
 

Keywords—Browser, Java-script, HTML, CSS, Electron, JSON, 

NPM, Node. 

I. INTRODUCTION  

Desktop applications initially gained considerable attention 

and became widely popular among users due to their ease of 

use and versatility in both personal and professional 

environments. However, with the spread of the Internet and 

the subsequent proliferation of Internet applications, the 

focus shifted to browser-based software solutions. This 

change raised concerns about the future of desktop apps, but 

they managed to survive and remain relevant. The 

fundamental differences between desktop and web apps 

affect their strengths and use cases [1]. Desktop applications 

offer advantages such as superior performance, direct access 

to system resources and the ability to work offline. They are 

particularly suitable for resource-intensive tasks, complex 

operations and applications that require a high level of 

protection. On the other hand, web applications stand out 

due to accessibility, cross-platform compatibility and 

centralized updates[2]. They can be accessed from any 

device using a web browser and are ideal for scenarios 

where usability and collaboration across multiple platforms 

are critical. The coexistence of both desktop and web 

applications allows users to choose a suitable solution 

according to their requirements and preferences. 

 

A. Desktop Based Application 

Desktop applications, also known as native applications, are 

software designed to be installed and run directly on a user's 

computer or desktop environment. Unlike web applications 

running in a web browser, desktop applications have direct 

access to system resources and can use all the capabilities of 

the local machine [3]-[6]. This allows desktop applications 

to offer better performance, responsiveness and offline 

functionality. They can interact with hardware devices, use 

local storage, and use advanced features provided by the 

operating system. Desktop applications also offer a higher 

level of control and security because they run in the user's 

local environment, reducing the risk of data breaches and 

unauthorized access. While web applications offer usability 

and cross-platform compatibility, desktop applications are 

recommended for resource-intensive tasks, complex 

operations and scenarios where offline access and local 

processing power are critical. 

B. Web Based Application 

Web applications have gained widespread popularity due to 

their accessibility and versatility. Unlike desktop 

applications, web applications can be accessed through web 

browsers on various devices without installation. They are 

created using web technologies such as HTML, CSS and 

JavaScript, so they are cross-platform compatible. Web 

applications provide centralized deployment and updates, 

where server-side changes are immediately visible to all 

users [5]. They promote collaboration and data sharing by 

allowing multiple users to access and interact with an 

application simultaneously. With proper security measures, 

web applications can ensure data encryption, user 

authentication and protection against vulnerabilities[7]. 

They are scalable and cost-effective because they can meet 

growing user demands without significant infrastructure 

investment. In general, web applications provide a flexible 

and easy-to-use solution for a wide range of user and 

business needs. 



 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 2 
 

II. DESKTOP VS WEB APPS 

Developing standalone desktop applications using web 

technologies has emerged as an innovative approach that 

allows developers to use their existing web development 

skills and tools to create powerful and versatile desktop 

applications[8]. This approach takes web technologies such 

as HTML, CSS and JavaScript that have traditionally been 

used to create web applications and extends their 

capabilities to desktop environments. By adopting web 

technologies for desktop application development, 

developers can benefit from code reusability, as a significant 

portion of the code base can be shared between the web and 

desktop versions of the application. In addition, web 

technologies provide platform independence, which allows 

applications to run seamlessly on different desktop 

operating systems, eliminating the need for separate code 

bases for different platforms. Developing stand-alone 

desktop applications using web technologies offers the 

opportunity to streamline the development process and 

maximize efficiency by using familiar web tools and 

workflows[9]-[11]. However, challenges such as optimizing 

performance for desktop use and using native resources 

must be considered, as web technologies are primarily 

designed for web-based environments. To address these 

challenges, frameworks and tools such as Electron, NW.js, 

and React Native have been developed that allow developers 

to package web applications as standalone executables and 

provide access to native APIs and functionality. This 

framework allows developers to create desktop experiences 

leveraging the flexibility and versatility of web 

technologies. Real-world examples like popular apps like 

Slack and Visual Studio Code demonstrate the success and 

potential of web-based desktop apps.  

 

III. ELECTRON FRAMEWORK 

 

The Electron Framework is a popular open-source 

framework that enables developers to create cross-platform 

and stand-alone desktop apps with web technologies 

including HTML, CSS, and JavaScript. It was created by 

GitHub and has grown in popularity among developers 

because to its versatility and ease of use[12]. 

 

One of the key advantages of the Electron Framework is its 

ability to create applications that can run on different and 

multiple operating systems, including Windows, macOS, 

and Linux. The application code is packaged with a version 

of the Chromium browser that serves as a runtime 

environment to provide cross-platform compatibility. 

 

Developers may construct desktop applications by using 

their existing web development expertise by utilizing web 

technology[14]. They can create the user interface with 

HTML structure, CSS style, and JavaScript interactivity. 

Developers may use a broad range of web development 

tools, libraries, and frameworks within the Electron 

environment, allowing for speedy development and easy 

prototyping. 

 

The Electron Framework has sophisticated features and 

APIs that allow developers to use native operating system 

capabilities. Accessing the file system, manipulating 

windows and menus, dealing with hardware devices, and 

using native notifications are all examples of system-level 

interactions[17]. These features enable developers to design 

feature-rich desktop apps. 

 

In Electron Framework there are two important processes. 

They are different from each other and they are as follows: 

 The Main Process 

 The Renderer Process 

The primary process in the Electron Framework is in charge 

of operating the package. The primary script for JSON. The 

script that runs in the main process will be able to display a 

GUI by creating a number of web pages. The main process 

is always one and never more than one. There can be 

numerous renderer processes[10]. Each browser window 

runs a renderer process, resulting in a large number of 

renderer processes. The renderer process often renders the 

application's UI in the window. 

 

The rendering process loads web pages to display a 

graphical user interface. Each process takes advantage of 

Chromium's multi-process architecture and runs in its own 

thread. Electron also includes the ability to facilitate inter-

process communication so that the rendering process can 

communicate with the main process when needs. 

 

Management of all web pages and their equivalents 

rendering processes are managed by the main process. The 

renderer processes are isolated from each other and are just 

care about the site using it. 

 

The basic file structure is as follows:  

 index.html  

 main.js   

 package.json  

 render.js 

 

index.html which is an HTML5 web page serving one big 

purpose i.e our canvas.  

 

main.js creates windows and handles system events.  

 

package.json is the startup script for the application. It will 

run in the main process and it contains information about the 

application.  

 

render.js handles the application’s render processes 



 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 3 
 

Packaging and distribution are important considerations 

with the desktop application development process. Because 

a general purpose desktop application development 

framework, The electron must allow easy access to the 

package and distribution of applications to different 

platforms. Project known as Electron-Packager was 

developed Electron Community, which deals with this. The 

right action must be available for users to install it desktop 

application for your machines. It is taken managed by 

Electron Packager. Electronic packaging application simply 

means creating a desktop installer required operating 

system. It recognizes the platform system and integrate the 

application accordingly the platform thus creates an 

operating system-specific desktop application. 

 

 

 

 

A. Electron Architecture 

 

Electron combines Chromium and Node.js into a single 

runtime to provide cross-platform desktop applications. 

Electron can be thought of as a minimal browser that has the 

ability to interact with the operating system, and this 

browser is part of the application. With Electron developers 

can forget about any OS browser compatibility issues[14]. 

They can be sure that everyone using the app has the same 

version of Chrome and the same version of Node.js, 

regardless of the user's computer. 

 

B. Node.js 

 

Node.js is a JavaScript platform built on Google Chrome's 

JavaScript V8 Motor. It provides a runtime environment for 

server-side development building applications that use 

JavaScript and APIs to access the file system web server and 

download the code from the external module[13].  Node is 

open source and is used by thousands of developers around 

the world in the world Node.js allows developers to share 

and update code by name and use over 250,000 NPM 

packages. Node.js can be seen as pure web application 

framework, but the truth is that Node.js can be used for the 

desktop also applications. Electron is an example of 

frameworks using Node.js create cross-platform desktop 

applications. 

 

C. Chromium browser 

 

The Chromium browser is an opensource version of 

Google's Chrome browser. They share most of the code and 

features, but have some differences in features and different 

licenses. Chromium renders web pages as an independent 

process, loads CSS styles and executes JavaScript codes. 
 

D. Electron’s multi-process architecture 

 

Electron applications inherit Chromium's multi-process 

model. An electron applications mainly consist of two types 

of processes: the main process and zero or more image 

processes. Each process has a different role application The 

main process is responsible for creating and controlling it 

application life cycle[19]. He is also responsible for dealing 

with indigenous peoples operating system APIs[18]. The 

rendering process loads web pages to display a graphical 

user interface. Each process takes advantage of Chromium's 

multi-process architecture and runs in its own thread. It also 

contains an electron the  ability to facilitate communication 

between processes so that imaging process to communicate 

with the main process in case they needs. 

 

 
 

Figure 1: Electron’s multi-process architecture 

E. The Programming language of Electron 

 
As mentioned earlier, Electron uses web technologies 

JavaScript, HTML5 and CSS for developing desktop 

applications. These technologies are the basis when building 

web pages. Electron uses web pages for creating the 

graphical user interface of the app[16]. The structure of a 

page is created using HTML5, while the visual layout is 

made using CSS. JavaScript, which is a client-side 

programming language, can be used together with these 

technologies to make a web page dynamic. 

 

F. Electron APIs and Features 
 

In addition to the rich APIs of Node.js and HTML5, 

Electron has come up with a useful set of APIs and features 

for building desktop applications: 
 

 Create application windows, each with their own 

JavaScript context. 

 Desktop integration through the shell and screen 

APIs. 

 Tracking the power status of the computer. 

 Monitors the power state change. 

 Creating tray applications. 

 Copying and pasting from clipboard. 

 Creating menus and menu items. 

 Adding global keyboard shortcuts to the 

application. 



 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 4 
 

 Updating the application’s code automatically 

through app updates. 

 Crash reporting for when the application crashes. 

 Customizing Dock menu item. 

 Operating System Notifications. 

 Creating Window Installers. 

 Debugging and profiling. 

 Showing native system dialog. 

Electron offers many features, and this is not a complete list 

of the features available in the framework. in in particular, 

the collision reporting feature is unique to Electron[20]. 

Besides that Electron provides special tools for testing and 

debugging applications, called Spectron and Devtron. 

 
 

 
Figure 2: Electron application architecture 

 

TABLE – I  LITERATURE SURVEY 

 

Sr. No. Author and Paper title Parameters Summary of the Paper 

 

 

1. 

Responsive Webpage Using  HTML 

CSS[5].  

Authors: Gurinder Singh; Tarun Parashar 

INSPEC Accession Number: 22478878 

DOI: 

10.1109/ICCR56254.2022.9995922 

Publisher: IEEE 

Published in: 2022 International 

Conference on Cyber Resilience (ICCR) 

Developing a webpage or 

website that is compatible 

with various operating 

systems, their versions, and 

different device screen sizes 

can be challenging. However, 

this paper provides a 

comprehensive understanding 

of essential concepts for 

creating a universally 

compatible webpage/website. 

 

 

2. 

Covid-19 Data Visualization and Data 

Analytics with a Smart Standalone 

Mobile Application[4]. 

Authors: Abhijit Poddar; Monali Poddar 

INSPEC Accession Number: 20422217 

DOI: 

10.1109/INDICON49873.2020.9342143 

Publisher: IEEE 

Published in: 2020 IEEE 17th India 

Council International Conference 

(INDICON) 

In summary, it enables users 

to study and analyze data 

using engaging visualizations 

and user-friendly techniques. 

Moreover, the application is 

designed with an intuitive 

interface. Additionally, its 

open-ended nature allows for 

the swift introduction of new 

models to handle newly 

available Covid-19 data. 

 

 

3. 

Lyapunov Energy Function based 

Control of a Soft Switching Solid State 

Transformer for Three-phase Standalone 

Application[3]. 

Authors: Vikram Roy Chowdhury; 

Rajendra Prasad Kandula; Deepak Divan 

INSPEC Accession Number: 20134834 

DOI: 

10.1109/ECCE44975.2020.9236395 

Publisher: IEEE 

Published in: 2020 IEEE Energy 

Conversion Congress and Exposition 

(ECCE) 

In summary, Control and 

operation of a three-phase 

solid state soft switching 

transformer based on 

Lyapunov energy function for 

three-phase standalone 

application has been 

presented in this paper. Soft 

switching solid state 

transformer is based on a 

current source inverter type 

of topology with a high 

frequency transformer, 

therefore, making the 

https://ieeexplore.ieee.org/document/9995922/


 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 5 
 

converter immensely 

challenging to control and 

operate optimally. 

 

 

4. 

Detecting Malicious Behaviors in 

JavaScript Applications[2]. 

Authors: Jian Mao; Jingdong Bian; 

Guangdong Bai; Ruilong Wang; Yue 

Chen; Yinhao Xiao; Zhenkai Liang 

 

 

 

 

 

 

 

 

 

 

 

 

INSPEC Accession Number: 17649136 

DOI: 10.1109/ACCESS.2018.2795383 

Publisher: IEEE 

Published in: IEEE Access ( Volume: 6) 

This paper presents a 

proposal for identifying 

malicious JavaScript 

behaviors in JavaScript 

applications. The proposed 

approach involves creating a 

behavior model that 

encompasses both the 

application's behaviors and 

function-level execution 

details. A prototype detection 

system is developed to 

automatically construct 

behavior models for hybrid 

apps, enabling the detection 

of anomalous behaviors. 

 

 

5. 

Performance and stability Comparison of 

React and Flutter: Cross-platform 

Application Development[1]. 

Authors: Kamal Kishore; Shanu Khare; 

Vaibhav Uniyal; Sahil Verma 

INSPEC Accession Number: 22478851 

DOI: 

10.1109/ICCR56254.2022.9996039 

Publisher: IEEE 

Published in: 2022 International 

Conference on Cyber Resilience (ICCR) 

This research paper presents 

the study and comparison of 

the two most famous cross-

platform application 

development technologies. It 

starts by discussing the basic 

functions of the application 

development methodologies. 

Followed by, it contains a 

comparison of the 

performance of the 

applications developed by 

these technologies. 

 

 

V.  Implementation 

 

Basic steps of Electron App methodology the development 

is as follows: 

 

 Install Node.js and NPM. 

 Install a code editor like Visual Studio code, Atom, 

Sublime Text. 

 Initiate a node file to the desired directory. By 

using the following command e.g. npm init -y 

 Install the Electron package with the command e.g. 

npm install electron –save-dev. 

 Create a new JavaScript file (e.g., main.js). 

 Edit the main.js file and add application logic like 

const electron = require('electron') // load the 

electron module from NPM  

 

const app = electron.app // Module to control 

application life.  

 

const BrowserWindow = electron.BrowserWindow 

// Module to create native browser window.  

 

let mainWindow function createWindow () {  

// Create the browser window.  

 



 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 6 
 

mainWindow = new BrowserWindow({width: 950, 

height: 700}) // and load the index.html of the app.  

 

mainWindow.loadURL(`file://${__dirname}/rende

rer/index.html`) // This method will be called when 

Electron has finished  

// initialization and is ready to create browser 

windows.  

 

app.on('ready', createWindow) // Emitted when the 

window is closed.  

 

mainWindow.on('closed', function(){ 

mainWindow = null })} 

 

 Create an HTML file (e.g., index.html). 

 

 

 Design and code the user interface of your 

application within the index.html file. 

 Edit the main.js file and configure it to load 

index.html file as the main window of the 

application. 

 Build and run the Electron application. By the 

following command (e.g. npm start). 

 For packaging use a tool like “electron-builder” or 

“electron-packager” to package application for 

distribution on different platforms (Windows, 

macOS, Linux). 

 

VI. Result and Analysis 

 

The web application adapted to the Electronic 

Framework was successful works like a desktop 

application without using the web Browser. However, a 

desktop based on the Electron Framework applications 

use Chromium internally for HTML and CSS. 

 

Electron Packager was able to detect the host system 

initialize and run the desktop application on different 

platforms such as Windows, Mac and Linux. The 

Electron Desktop application executes the same way 

feel, look and consistency across platforms. 

 

The troubleshooting was done to ensure compatibility 

of Desktop application on different platforms and no 

problems found as a result of program testing on 

different platforms. 

 

Some unfavorable characteristics of the Electron 

Desktop Applications might be detected. 

 

The loading time of the desktop program is somewhat 

longer than that of the web application when launched 

through a web browser. This is due to the fact that 

HTML and CSS will be displayed and JavaScript will 

be performed by NodeJs. JavaScript is available as 

modules, which are all saved in the npm registry. The 

JavaScript modules that must be utilised are listed in the 

"package.json" file. Because these modules must be 

looked for and retrieved from the npm registry, the 

loading time for Electron Desktop Applications is 

significantly longer. 

Electron apps are simply a fully-featured Chromium 

browser and a Node process that interact over IPC.In 

terms of memory, packaged Electron apps are often 

rather huge. More and more web pages may be 

translated to the Electron Framework and hosted as a 

single Desktop Application. However, as the number of 

web pages converted to Electron Framework increases, 

memory consumption increases steadily after the 

Electron-Packaging step. 

 

When operated for an extended period of time, electron 

apps frequently require a substantial number of system 

resources as well as a significant quantity of battery 

power. 

 

VII. Conclusions and Future Work 

 

In conclusion, the development of stand-alone desktop 

applications using electron framework has changed the 

world of software development. Using web technologies 

such as HTML, CSS, and JavaScript, developers can create 

stand-alone applications that run natively on desktop 

operating systems. This approach offers several advantages, 

such as code reusability, platform independence, and a 

familiar development environment. However, the challenges 

of optimizing performance and using native resources have 

been solved by frameworks like Electron, allowing 

developers to package web applications as standalone 

executables and use native APIs. Real examples have 

proven the success and versatility of web-based desktop 

applications, while the constant development of web 

technologies continues to improve their capabilities. As the 

lines between web and native applications blur, the 

development of standalone desktop applications using 

electron framework represents a promising future for 

creating robust and versatile applications across multiple 

platforms. 

 

Electron Framework effectively hosts an existing online 

application in the form of a cross-platform desktop 

application, providing a consistent feel, appearance, and 

consistency across multiple platforms after electron 

packaging. 

 

 

Explored some crucial features of cross-platform and 

standalone desktop development using the Electron 

framework in this thesis. However, there are numerous 



 

 

 
1  Volume 7- Issue 1, January 2024 

2  Paper : 94 
 

Development of Standalone Application using Electron Framework   Page 7 
 

avenues for further investigation. Other elements of both 

frameworks can be tested because they have additional 

features that we did not use owing to time constraints in this 

thesis. Other features worth investigating are: 

 

 Native features like Notifications, trays, menus, 

etc. 

 Multithreading. 

 Security. 

 Integration with different frameworks like react.js, 

next.js etc 

 Packaging and distribution. 

REFERENCES 

 
[1] Kamal Kishore; Shanu Khare; Vaibhav Uniyal; Sahil Verma, “ 

Performance and stability Comparison of React and Flutter: Cross-
platform Application Development,” Published in: 2022 International 
Conference on Cyber Resilience (ICCR). 

[2] Jian Mao; Jingdong Bian; Guangdong Bai; Ruilong Wang; Yue Chen; 
Yinhao Xiao; Zhenkai Liang, “Detecting Malicious Behaviors in 
JavaScript Applications”, Published in: IEEE Access ( Volume: 6). 

[3] Vikram Roy Chowdhury; Rajendra Prasad Kandula; Deepak Divan 
,“Lyapunov Energy Function based Control of a Soft Switching Solid 
State Transformer for Three-phase Standalone Application”, 
Published in: 2020 IEEE Energy Conversion Congress and 
Exposition (ECCE). 

[4] Abhijit Poddar; Monali Poddar,“Covid-19 Data Visualization and 
Data Analytics with a Smart Standalone Mobile Application ”, 
Published in: 2020 IEEE 17th India Council International Conference 
(INDICON). 

[5] Gurinder Singh; Tarun Parashar ,“Responsive Webpage 
Using  HTML CSS “, Published in: 2022 International Conference on 
Cyber Resilience (ICCR) 

[6] Paulo R. M. de Andrade, Adriano B. Albuquerque,"Cross-Platform 
App-A comparative study",International Journal of Computer Science 
& Information Technology (IJCSIT),Vol 7, No 1, February 2015 

[7] N. M. Hui,L. B. Chienget, W. Y. Ting, H.H.Mohamed and M. 
Rafie,“Cross-Platform Mobile Applications for Android and iOS”, 
IFIP WMNC,IEEE 2015 

[8] Manuel P, Inderjeet Singh, Antonio Cicchetti, “Comparison of Cross-
Platform Mobile Development Tools”,16th International Conference 
on Intelligence in Next Generation Networks,2016 

[9] Kitti Kredpattanakul, Yachai Limpiyakorn, “Transforming 
JavaScript-Based Web Application to Cross-Platform Desktop with 
Electron”: ICISA 2018 

[10] Lalit Garg , Keith Vassallo, Cross-Platform Development 
Frameworks: Overview of contemporary technologies and methods 
for cross-platform application development. 2nd International 
Conference on Computers & Management (ICCM 2016). 

[11] Xanthopoulos S, Xinogalos S. "A comparative analysis of cross-
platform development approaches for mobile applications", in 6th 
Balkan Conference in Informatics, 2013, Thessaloniki,Greece. 

[12] A. Goldenberg, "Pros and cons of developing native vs. Cross-
platform web-based mobile application," 2002. [Online]. Available: 
https://www.dbbest.com/blog/pros-and-cons-of-developing-native-vs-
crossplatform-web-based-mobile-application/. 

[13] Raj R, Tolety SB. A study on approaches to build cross-platform 
mobile applications and criteria to select appropriate approach. In: 
2012 Annual IEEE India Conference (INDICON); 2012. 

[14] Manuel Palmieri, Inderjeet Singh, Antonio Cicchetti, A. Comparison 
of cross-platform mobile development tools. In: 2012 16th 
International Conference on Intelligence in Next Generation 
Networks (ICIN); 2012. 

[15] Xanthopoulos S, Xinogalos S. "A comparative analysis of cross-
platform development approaches for mobile applications", in 6th 
Balkan Conference in Informatics, 2013, Thessaloniki,Greece. 

[16] "Electron," Electron. [Online]. Available: http://electron.atom.io/. 

[17] "Create cross-platform desktop Node Apps with electron," in 
JavaScript, SitePoint, 2016. [Online]. 
Available:https://www.sitepoint.com/desktopnodeapps-with-electron/ 

[18] P. Jensen, Cross-platform Desktop Applications, MEAP ed. ch. 1, pp. 
3- 30 [Online]. Available: https://www.manning.com/books/cross-
platformdesktop-applications. 

[19] A Cross-Platform Application Environment for Nomadic Desktop 
Computing, Stefan Paal, Reiner Kammüller & Bernd Freisleben, 
(LNCS,volume 3263) 

[20] Embankment Protection - React Native Application Cross-Platform 
Application for protection of embankments by crowd sourced data, 
AnshulVarshav Borawake; Minal Shahakar, Published in: 2021 
International Conference on Computing, Communication and Green 
Engineering (CCGE

 

https://ieeexplore.ieee.org/document/9995922/
https://ieeexplore.ieee.org/document/9995922/
https://link.springer.com/chapter/10.1007/978-3-540-30196-7_14#auth-Stefan-Paal
https://link.springer.com/chapter/10.1007/978-3-540-30196-7_14#auth-Reiner-Kamm_ller
https://link.springer.com/chapter/10.1007/978-3-540-30196-7_14#auth-Bernd-Freisleben

