

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 1

Enhancing Real-Time Data Management through

Software Architecture Development

Nagendra Herle1,Jayasimha S R2
1,2Master of Computer Application

1,2R.V. College of Engineering

Bengaluru,India
1nagendrah.mca21@rvce.edu.in,2jayasimhasr@rvce.edu.in

Abstract—The process of improving the management of

real-time data by leveraging advancements in software

architecture. It involves designing and implementing

software architectures that are specifically tailored to

handle the complexities and requirements of real-time

data processing, storage, and retrieval. Real-time

database or data management refers to the process of

managing and manipulating data in real-time, where

data is processed and updated immediately as it is

generated or received.The objective of this study is to

investigate how software architecture can contribute to

efficient real-time data management.The methods

employed in this research involve a comprehensive

review of existing literature on real-time data

management and software architecture.Various

approaches and frameworks for real-time data

processing, storage, and retrieval are examined, with a

focus on their architectural implications.Study

emphasizes the value of software architecture

development in advancing real-time data management

and provides insights into the potential benefits and

challenges associated with adopting architectural

strategies for managing real-time data effectively.

Keywords—Microservices, Monolith, NoSQL, MongoDB,

Real-time data management

I. INTRODUCTION

In today's rapidly evolving digital landscape, the importance

of data cannot be overstated. Data has become a valuable

asset for organizations across various industries, enabling

informed decision-making, driving innovation, and

enhancing operational efficiency. As the volume, variety,

and velocity of data continue to grow exponentially, it has

become essential for organizations to effectively store,

manage, and secure their data assets.In today's rapidly

evolving digital landscape, the importance of data cannot be

overstated. Data has become a valuable asset for

organizations across various industries, enabling informed

decision-making, driving innovation, and enhancing

operational efficiency.As the volume, variety, and velocity

of data continue to grow exponentially, it has become

essential for organizations to effectively store, manage, and

secure their data assets [1].Data storage and management

are critical components of any data-driven organization.

Proper storage infrastructure and efficient management

practices ensure that data is organized, accessible, and

available for analysis and decision-making purposes.

Organizations employ various data storage technologies,

such as databases, data warehouses, data lakes, and cloud

storage solutions,to cater to their specific needs.Data lakes

allow to quickly consolidating various types of data in one

repository[8].Additionally, data management practices

encompass data governance, data quality assurance, data

integration, and data lifecycle management, among

others.Real-time data has emerged as a critical requirement

in many industries and applications.

Real-time data refers to the ability to access, process, and

analyze data as it is generated, with minimal delay.Real-

time data has emerged as a critical requirement in many

industries and applications. Real-time data refers to the

ability to access, process, and analyze data as it is generated,

with minimal delay. This is particularly valuable in

scenarios where time-critical decisions need to be made,

such as financial trading, supply chain management, and

emergency response systems. Real-time data enables

organizations to monitor and respond to events as they

occur, providing immediate insights and facilitating

proactive decision-making.

Real-time database systems (RTDBSs) have been widely

applied in many areas[2]. Industrial control [3], vehicle

control [4], aircraft control [5], health monitoring [6], and

robot control [7] are a few examples of such applications.

Maintaining real-time data poses its own set of challenges. It

requires robust and scalable data management systems that

can handle high volumes of incoming data in a timely

manner. Processing and analyzing data in real-time often

necessitate the use of specialized technologies such as

stream processing engines, complex event processing, and

in-memory databases. Furthermore, ensuring data

consistency, reliability, and accuracy in real-time

environments is crucial to prevent data loss or

inconsistencies that could impact decision-making

processes.

The specific difficulties and demands of handling data in

real-time give rise to the necessity for software architecture

in real-time database administration.Software architecture

refers to the high-level design and organization of software

components and their interactions within a system.Software

architecture can be viewed as an organization of a system

that comprehensively includes components interactions,

operational environments, design principles, software

functionalities, and often covers future evolutionary

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 2

software perspective [10]-[13].Software architecture has

emerged as the initial comprehension of the large-scope

structures of software systems[9].The need for software

architecture in real-time database management arises from

the unique challenges and requirements of handling data in

real-time. Real-time databases deal with high volumes of

data that need to be processed, stored, and accessed in a

time-critical manner. Software architecture allows for the

design of systems that can efficiently handle this continuous

flow of data and meet the stringent performance

requirements.A well-designed software architecture enables

scalability and performance in real-time database

management. It allows the system to handle increasing data

volumes and user demands by efficiently distributing the

workload across multiple nodes or clusters. This scalability

ensures that the system can maintain responsiveness even

during periods of high data influx.Software architecture

facilitates data integration and interoperability in real-time

database management. It provides mechanisms for

seamlessly integrating data from diverse sources and

systems, such as IoT devices, sensors, and external data

feeds. This integration ensures a unified view of the data

and enables real-time access to consolidated and integrated

information.

Architectural approaches like monolithic and microservices

offer different perspectives on system design. A monolithic

architecture represents an application as a single, tightly

integrated unit. While simple to develop, it may face

challenges in scalability and agility. On the other hand,

microservices architecture decomposes an application into

independent services that can be developed, deployed, and

scaled independently. This modular approach enables the

integration of real-time data processing services with the

database infrastructure, providing flexibility and scalability.

A. Motivation and Problem statement

 In today's rapidly evolving world, the generation of data has

reached unprecedented levels in terms of its volume, speed,

and variety. Across industries, organizations recognize the

tremendous value that real-time data holds in gaining a

competitive edge. Real-time data offers immediate insights,

enabling informed decision-making, agile responses to

market dynamics, and the delivery of personalized customer

experiences. It empowers businesses to optimize operations,

detect anomalies, and capitalize on emerging opportunities.

However, fully harnessing the potential of real-time data

requires effective management and efficient utilization.

Moreover, the need for scalability and performance in real-

time data management cannot be overlooked. As data

volumes and processing demands increase, organizations

must have scalable architectures and systems that can handle

the growing workload efficiently. Real-time data

management should also address the latency challenge,

ensuring that data is accessible and processed within the

required time frames.

The following research questions were posed to

guide the study:

 (RQ1) How can organizations effectively manage and

process real-time data of various types and structures,

considering the inherent data variety?

 (RQ2) How can real-time data integration be optimized

to efficiently handle diverse data sources and formats

in a unified manner?

 (RQ3) What techniques and technologies can mitigate

data latency challenges in real-time data management,

ensuring timely access and processing?

The need for scalability and performance in real-time data

management cannot be overlooked. As data volumes and

processing demands increase, organizations must have

scalable architectures and systems that can handle the

growing workload efficiently.Real-time data management

should also address different methodologies and frameworks

can be utilized to ensure the security and privacy of real-

time data.

B. Outline of the Paper

The rest of the paper is organised as follows. The following

section describes details of the databases and architectural

styles, and compares and contrasts their advantages and

disadvantages.Section 3 discusses related work.The research

methods are explained in Section 4. This is followed by

Section 5, concludes the study along with suggestions for

future research.

II. BACKGROUND

In the subsequent sections, we present more details on

software architectures as well as database management.

A. Understanding the Basics: Data, Information, Database,

and DBMS Explained

Data: Data refers to raw, unprocessed facts, figures, or
symbols that represent various aspects of the real world. It
typically consists of numbers, text, images, or other forms of
input that can be stored and processed by computer systems.

Information: Information is the processed and organized
form of data that has meaning and relevance. It results from
the analysis, interpretation, or manipulation of data,
providing insights or knowledge that can support decision-
making, understanding, or communication.

Database: A database is a structured collection of data that is
organized, stored, and managed in a systematic way to
support efficient data retrieval, manipulation, and sharing. It
serves as a central repository for storing and accessing
related information, allowing multiple users or applications
to interact with the data concurrently.

DBMS (Database Management System): A DBMS is a
software system that enables the creation, organization,
retrieval, and manipulation of data in a database. It provides
a set of tools, functions, and capabilities to efficiently
manage data, enforce data integrity and security, and
facilitate data interactions between users or applications. A
DBMS ensures data consistency, concurrency control, and
data recovery in case of failures or errors.

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 3

These definitions highlight the distinction between data and
information, where data represents the raw input, while
information is the processed output that provides meaningful
insights. A database serves as a structured repository for
storing and managing data, and a DBMS acts as the software
that enables efficient management and utilization of the
database.

FIGURE 1: Simplified database system environment.

B. Relational Databases

Relational databases are a widely used type of database
management system (DBMS) that organizes data into tables
with predefined relationships between them.For many
different organizations, including large multinational firms
such as Google and Facebook, data forms a strategic asset
that must be carefully curated and protected [14]. Indeed,
fields such as healthcare, science, and commerce often rely
on information that is stored in databases [15]. While non-
relational “NoSQL” systems have been gaining in popularity,
relational databases remain pervasive[20]. For instance,
Skype, the widely used video-call software, uses the
PostgreSQL database management system (DBMS) [16]
while Google makes use of the SQLite DBMS in Android-
based phones [17]. Moreover, relational databases form the
backbone of Internet web browsers such as Chrome

1
 and

Firefox
2
, mobile applications [18], and even software

powering political campaigns [19].

1. https://www.google.com/chrome/browser
2. http://www.mozilla.org/firefox

In a relational database, data is organized into tables, which

consist of rows and columns. Each table represents a

specific entity or concept, and each row represents a unique

record or instance of that entity. Columns, also known as

attributes, define the characteristics or properties of the

entity. The relationships between tables are established

through keys, such as primary keys and foreign keys, which

ensure data integrity and enforce referential integrity.

Relational databases use Structured Query Language (SQL)

for data manipulation and retrieval. SQL databases are a

general term for relational DBMS like MySQL [21], Oracle

[22], and PostgreSQL [23].SQL provides a standardized

language for creating, modifying, and querying the database.

It allows users and applications to perform operations such

as inserting data into tables, updating existing records,

deleting records, and querying data using powerful filtering

and aggregation capabilities.

Despite their widespread use and long history, relational

databases have some limitations when it comes to handling

real-time data. Relational databases can cause latency in the

context of real-time data management due to its disk-based

storage and structured query processing, which impedes

immediate data access and updates. In order to manage

high-velocity and high-volume real-time data streams, they

may also encounter difficulties scaling horizontally.

C. NoSQL Databases

NoSQL databases are designed for handling large-scale,

unstructured or semi-structured data. They offer flexible

schemas and can handle high-velocity data. Examples

include MongoDB, Cassandra, and Redis.NoSQL databases

have gained significant popularity and are widely used in

various applications, including those requiring real-time

data processing. In contrast to traditional relational

databases, NoSQL databases offer specific advantages that

make them well-suited for real-time data management.

Real-time applications often deal with a continuous flow of

data that needs to be ingested, processed, and analyzed in

near real-time. NoSQL databases, with their distributed

architecture and horizontal scalability, excel at efficiently

handling large volumes of data and providing high-

throughput data ingestion and processing capabilities. This

makes them suitable for use cases such as real-time

analytics, event-driven applications, and streaming data

processing.

All kinds of data are stored and handled in NoSQL

databases in a number of ways, such as a document-oriented

store, a column-oriented store, a KeyValue store, and a

graph-based store.

MongoDB is a document-oriented Non-relational database

that can be used to distribute and store large binary files like

videos and images [24].It utilizes a binary representation

known as BSON (Binary JSON) objects to store data in a

JSON-like format. MongoDB's design allows related

information to be stored together, enabling efficient

querying through its query language. Data in MongoDB is

organized into collections, and the structure of documents

can vary without the need for declaring it explicitly to the

system. This self-describing nature of documents eliminates

the requirement for system-wide updates or downtime when

adding new fields to a document. As a result, MongoDB

delivers superior performance compared to other databases,

ensuring optimal resource utilization and efficient long-term

storage. Indexing over embedded objects and arrays is also

supported by MongoDB. In comparison to other NoSQL

databases, it works well with memory storage, complicated

data, and dynamic queries. As a scaleout-based system,

MongoDB offers flexibility to function in the event of

hardware expansion. [25]-[26].

While NoSQL databases provide significant benefits for

real-time data management, it's crucial to remember that the

decision between NoSQL and conventional relational

databases depends on the requirements of the individual

application. In situations where intricate transactions, tight

data consistency, or significant SQL querying capabilities

are required, relational databases may still be desirable.

However, NoSQL databases offer useful capabilities and

https://www.google.com/chrome/browser
http://www.mozilla.org/firefox

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 4

performance characteristics when processing real-time data

that is flexible, fast-moving, and changing often.

D. Software Architecture

Software architecture encompasses the fundamental design

choices made during the development process. It is

considered a fundamental aspect of software engineering

that precisely defines the essence of software system design

and development. Software architecture plays a crucial role

in fulfilling both functional and non-functional requirements

and is an essential component throughout the software

evolution lifecycle.

FIGURE 2: Monolithic and microservices architecture[37]

Monolithic architecture is a traditional software design

approach where the entire application is built as a single,

unified unit. In this architecture, all the components,

modules, and functionality of the application are tightly

coupled and interdependent.

One of the main strengths of monolithic architecture lies in

its simplicity. Unlike distributed applications with various

components, monolithic architectures are relatively easier to

test, deploy, debug, and monitor. By storing all data in a

single database without the need for synchronization,

internal communication within the application occurs

through intra-process mechanisms. As a result, it offers

faster performance and avoids the typical challenges

associated with inter-process communication (IPC).

Nevertheless, as the application expands in size and

complexity, challenges begin to emerge. Modifying the

application's source code becomes increasingly difficult as

intricate code begins to exhibit unexpected behaviors.

Making changes in one module can lead to unforeseen

consequences in other modules, causing a cascade of errors.

Additionally, the sheer size of the monolith contributes to

longer start-up times, impeding development speed and

hindering continuous deployment efforts. Also, as the

application grows, the number of developers increases,

which often leads to unequal workforce utilization and, in

effect, losses in productivity [27].

Microservice architecture is an architectural style that

structures an application as a collection of loosely coupled

and independently deployable services. Each service is

designed to focus on a specific business capability and can

be developed, deployed, and scaled independently of other

services.Microservices rely on standardized internet

protocols for communication, including HTTP and REST.

They may also utilize messaging protocols such as JMS

(Java Message Service) or AMQP (Advanced Message

Queuing Protocol). These protocols provide a consistent and

efficient means of communication between microservices,

enabling seamless interaction within a microservices

architecture.

The most attractive feature of the microservice architecture

is the decomposition of complex applications into smaller

components which are easier to develop, manage and

maintain than a single monolith application

[28].Microservices are autonomous and communicate via

open protocols, hence they can be developed fairly

independently and even with different technologies [29],

[30]–[31].Microservice-based applications exhibit excellent

horizontal scalability, benefiting not only from technical

advantages but also from the streamlined organization and

agility of developer teams [29], [33], [34], [35].

In addition to its many benefits, the microservice

architecture has certain limitations and drawbacks,

particularly due to its distributed nature. The process of

deploying, scaling, and monitoring a multi-service system is

more intricate compared to a monolithic application.Another

challenge arises in the design of data management facilities

within the microservice architecture. According to the

principles of microservices, it is preferable to have

maximum service isolation. As a result, multiple

independent database systems are incorporated into the

distributed application, which adds complexity and reduces

manageability [27].

III. RELATED WORK

In the domain of real-time data management, extensive

research has been conducted to investigate diverse scenarios

and databases in order to comprehend their functionalities

and constraints.Previous studies have predominantly

concentrated on evaluating various metrics such as storage

capacity, query syntax, query latency, database connection

time, and schema design, as emphasized by [24]. However,

it is important to note that the existing surveys and

systematic reviews in the realm of real-time data processing

research have been found to have certain limitations.

Specifically, these studies lack comprehensive coverage of

the publication channels, approaches, challenges, and

solutions that are specifically tailored to address the unique

requirements of business intelligence. Therefore, there is a

significant research gap in terms of providing a holistic

understanding of real-time data processing within the

context of business intelligence.

A recent study conducted by [36] aimed to address this gap

by conducting a comparative analysis of various data stream

analytics frameworks. The evaluation specifically assessed

the partitioning, state management, message delivery, and

fault tolerance capabilities of popular data stream processing

engines such as Storm, Spark Streaming, Flink, Kafka

Streams, and IBM Streams. While the study provided

valuable insights into the technical aspects of these

frameworks, it is important to note that the primary focus

was not on extracting knowledge or identifying crucial

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 5

components for real-time stream analytics, which are

fundamental requirements in the field.

In their noteworthy study, [37] dedicated their efforts to

investigating the realm of real-time stream processing and

big data streaming. Their research took a close look at the

intricacies of the Extract, Transform, Load (ETL)

architecture for Predictive Analytics and Smart Decision-

Making, shedding light on its implementation challenges

and advancements in join operations for real-time data

processing.

While the study provided valuable insights into these

aspects, it is important to note that the researchers did not

primarily focus on the utilization of software architecture to

enhance real-time data management. Although their

exploration of the ETL architecture and its implications for

real-time data processing is commendable, the specific role

and potential impact of software architecture in optimizing

real-time data management were not extensively addressed

in their research.

Our review sets itself apart from previous studies by placing

a specific emphasis on exploring the publication channels

that are closely associated with real-time data processing.

We recognize the crucial role played by software

architecture in enhancing the management of real-time data,

and we delve deeper into this topic by examining key

components such as cache memory, message brokers, and

their impact on addressing critical challenges such as data

integration and data latency. By thoroughly investigating

these aspects, our review offers comprehensive insights and

valuable contributions to the field of real-time data

processing and its related domains.The table below presents

the details of the literature survey.

TABLE I: LITERATURE SURVEY

Number Author and Paper title Parametrs Summary of the Paper

1.

Real-Time Context-Aware

Microservice Architecture for

Predictive Analytics and Smart

Decision-Making[43].

Authors: Guadalupe Ortiz; José

Antonio Caravaca; Alfonso

García-de-Prado; Fràncisco

Chavez de la O; Juan Boubeta-

Puig

Published in: IEEE Access (

Volume: 7)

Date of Publication: 18

December 2019

DOI:

10.1109/ACCESS.2019.2960516

This paper introduces a

context-aware architecture

based on microservices that

offers intelligent real-time

predictions and context-aware

notifications. The system

utilizes user subscriptions to

deliver personalized and

relevant information to users.

2.

Monolithic vs. Microservice

Architecture: A Performance and

Scalability Evaluation[44]

Authors:Grzegorz Blinowski;

Anna Ojdowska; Adam

Przybyłek

Published in: IEEE Access (

Volume: 10)

Date of Publication: 18 February

2022

INSPEC Accession Number:

21643479

DOI:

10.1109/ACCESS.2022.3152803

It is important to consider the

specific context and

requirements when choosing

between a microservice and

monolithic architecture. While

microservices offer flexibility

and scalability, a monolithic

architecture may be more

suitable for simple systems. It

is crucial for companies to

avoid blindly adopting

microservices, instead evaluate

if scaling up their monoliths

can yield better results.

3.

Performance Evaluation of IoT

Data Management Using

MongoDB Versus MySQL

Databases in Different Cloud

Environments[24]

Authors:Mahmoud Moustafa

Eyada; Walaa Saber; Mohammed

M. El Genidy; Fathy Amer

Published in: IEEE Access (

Volume: 8)

Date of Publication: 15 June

2020

INSPEC Accession Number:

19799020

DOI:

10.1109/ACCESS.2020.3002164

This paper conducted a

comparative analysis of

MongoDB and MySQL in

handling large-scale

heterogeneous IoT data.

Multiple scenarios were created

to assess the performance of

both databases. The findings

indicated that as the workload

increased, MySQL exhibited a

significant decline in

performance compared to

MongoDB.

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 6

4.

Challenges and Solutions for

Processing Real-Time Big Data

Stream: A Systematic Literature

Review [37].

Authors:Erum Mehmood;

Tayyaba Anees

Published in: IEEE Access (

Volume: 8)

Date of Publication: 26 June

2020

INSPEC Accession Number:

19799743

DOI:

10.1109/ACCESS.2020.3005268

This survey aims to provide

researchers with valuable

guidance in the field of real-

time stream analysis for DWH

and big data applications. It

offers insights into

implementation challenges,

approaches, tools, and

evaluation evidence related to

real-time stream processing in

various application domains.

5.

Performance Analysis of Not

Only SQL Semi-Stream Join

Using MongoDB for Real-Time

Data Warehousing[40].

Authors:Erum Mehmood,

Tayyaba Anees

Published in: IEEE Access (

Volume: 7)

Date of Publication: 17

September 2019

INSPEC Accession Number:

19001954

DOI:

10.1109/ACCESS.2019.2941925

This paper addresses the

challenges of joining NoSQL

streams, specifically focusing

on the semi-stream join

processing of unstructured and

structured data streams from

disk.

IV. RESEARCH METHODOLOGY

In this section, we propose implementation method for the

real time data module and the software

architecture.Architecture shown in figure 1, presents real-

time stream processing.In our implementation of real-time

data processing, we began by gathering the dataset. To

facilitate the extraction of text from the data in real-time, we

employed the machine learning algorithm called easyOCR.

The collected dataset was then stored in MongoDB, a

popular document-oriented NoSQL database. To establish a

connection with the database and enable efficient

communication, we utilized RabbitMQ as a message broker,

which facilitates the exchange of messages between

different components of the system. Additionally, to

minimize the need for frequent database fetch operations

and improve performance, we leveraged Redis, an in-

memory caching solution. By employing Redis, we were

able to store and retrieve frequently accessed data quickly,

reducing the overall response time of the system.

MongoDB Compass with MongoDB Server version 3.0

have been installed for our implementation on a machine

running an Intel Core i5 1.70 GHz processor with 4GB of

RAM. Proposed applications were coded in python using

IDLE (python 3.6 64-bit).

In sub-section A,focusing specifically on the importance of

managing data variety within the system. We delve into the

strategies and techniques employed to ensure effective

management of diverse data types.

FIGURE 3: Real-time data processing architecture[40]

Moving to sub-section B, we provide a detailed examination

of the database, we present a comprehensive overview of

the integration and communication processes between

various components, placing a strong emphasis on the

criticality of efficient data integration and the effective

handling of diverse data types.

In sub-section C, our attention turns to the functioning of in-

memory databases. We provide a comprehensive overview

of how these databases operate within the system,

considering their role in optimizing data storage and

retrieval. Finally, in sub-section D, we provide a concluding

overview of the system's overall functioning, consolidating

the various components discussed in the preceding sub-

sections.

A. Enhancing Real-Time Data Management through

Microservices Architecture for Diverse Data Types

In the context of real-time databases, the flexibility in

managing diverse data types is facilitated by the

microservices architecture. By decomposing the system into

individual services, each service can be specifically designed

to handle and process a particular data format or

type.Microservices architecture provides flexibility in

managing diverse data types.

Microservices architecture provides the opportunity to

optimize resource utilization by allocating them more

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 7

intelligently. Unlike monolithic applications where resource

allocation is fixed, microservices allow for independent

scaling of specific components or functionalities. By

implementing a microservices architecture, we can

selectively scale the specific components of the code that

require additional resources, while keeping resource usage at

a lower level for the remaining parts.

This flexibility allows us to allocate resources efficiently to

the appropriate sections of the system, optimizing

performance and resource utilization. For instance, in a

scenario where a monolithic application uses 8GB of RAM,

scaling to two instances would result in a total RAM usage

of 16GB.

In contrast, with microservices, the heavy-lifting portion of

the code can be distributed across multiple instances, each

utilizing a fraction of the resources. As a result, the overall

RAM usage for two instances of microservices may be

significantly lower, such as 9.6GB in this example. This

distinction in resource usage is illustrated in the

accompanying diagram, highlighting the efficiency gains

achievable through microservices architecture.

Developing and running a microservices application presents

its own set of complexities, particularly related to

containerization and cluster management. These tasks

require significant expertise and careful handling to ensure

smooth operation.On the other hand, monolithic applications

offer relative simplicity during development, as they involve

a single codebase and a single library. Running a monolithic

application is also straightforward, especially at smaller

scales, as developers can easily keep track of all the

components.

FIGURE 4: Resource usage [38]

However, as applications grow larger and more complex,

managing monolithic architectures becomes increasingly

challenging. Legacy monolithic applications can become

unwieldy, with millions of lines of code that are difficult to

manage and maintain. This often leads to the need for

migration to microservices architectures, as the complexities

of managing and scaling monolithic applications become

overwhelming.

Therefore, while monolithic applications may appear simpler

initially, when it comes to large-scale applications,

microservices architectures are better suited despite the

inherent complexities involved. The flexibility and

scalability offered by microservices outweigh the challenges,

making them a preferable choice for managing complex and

expansive systems.

FIGURE 5: A Comparison of Complexity: Monoliths vs. Microservices [39]

Assement of RQ1: By decomposing the system into

individual services, each responsible for processing specific

data formats, different data types can be efficiently

integrated and transformed.In our implementation, we utilize

the easyOCR machine learning algorithm to detect text

within videos. By employing a microservices architecture,

we can develop distinct services specialized in handling

different data types. Specifically, we create a text processing

service dedicated to parsing and analyzing textual data,

while a separate video processing service is responsible for

efficient video streaming.

In the context of real-time data processing, we employ the

RabbitMQ message broker for seamless integration of text

detection results into the database. As a reliable and scalable

communication tool, RabbitMQ facilitates efficient and

secure communication between various components of the

system, ensuring smooth data integration.

B. Database Integration and Data Handling

Assement of RQ2: RabbitMQ is a popular open-source

message broker that facilitates communication and data

transfer between different components of a distributed

system. It follows the Advanced Message Queuing Protocol

(AMQP) and is designed to handle high volumes of

messages efficiently and reliably. The event bus

implementation with RabbitMQ lets microservices

subscribe to events, publish events, and receive events, as

shown in Figure 6.

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 8

FIGURE 6: RabbitMQ implementation of an event bus[42]

RabbitMQ functions as an intermediary between message

publisher and subscribers, to handle distribution.

The detected text is transmitted through the RabbitMQ

message broker, where it is consumed by the RabbitMQ

consumer. The message body contains the detected text,

which is then fetched and processed from the MongoDB

database to retrieve the associated data.

 RabbitMQ plays a crucial role in enabling efficient

communication and decoupling of components in

distributed systems, making it a popular choice for building

reliable and scalable messaging solutions.

Code for the database connection:

client1=pymongo.MongoClient('mongodb://localhost:27017

/ais')

db1 = client1['ais']

collection1 = db1['navy_data']

documents = collection1.find({"Pennant Number":

body.decode()})

Code for the RabbitMQ connection:

connection=pika.BlockingConnection(pika.ConnectionPara

meters('localhost'))

channel = connection.channel()

channel.queue_declare(queue='my_queue')

Set up the publish and start publishing messages

channel.basic_publish(exchange='',

routing_key='my_queue', body=text)

Set up the consumer and start consuming messages

channel.basic_consume(queue='my_queue',

on_message_callback=callback, auto_ack=True)

print('Waiting for messages. To exit, press CTRL+C')

channel.start_consuming()

C. In-memory Databases

Assement of RQ3:An in-memory database is a type of
database management system that stores data entirely in the
main memory (RAM) of a computer or server, rather than on
traditional disk storage. It is designed to provide fast and
efficient access to data by eliminating the need to read from
or write to disk.

Redis is an open-source, in-memory data structure store that
is commonly used as a database, cache, and message broker.

It is designed for high-speed data access.Redis operates
primarily in memory, which allows for extremely fast read
and write operations. It stores data in key-value pairs and
offers various commands and operations for efficient data
manipulation and retrieval. With its in-memory nature, Redis
excels in use cases that require low-latency and high-
throughput data processing, such as real-time analytics,
session caching, and messaging systems.In-memory
databases like Redis or Apache Ignite can reduce data
latency by caching frequently accessed data in memory. This
speeds up data retrieval by minimizing disk I/O operations,
enabling near-instantaneous access to real-time data.

FIGURE 7: Redis cluster architecture for high availability[42]

The retrieved data from the database is cached in Redis, an
in-memory data store. To optimize performance, an
expiration time is associated with the cached data, ensuring
that it is automatically flushed after a specific period. This
caching mechanism helps in avoiding repetitive fetch
operations from the database.

Whenever duplicate text data is received through the
message broker, the system checks if it already exists in the
Redis cache. If the data is found in the cache, it eliminates
the need for a time-consuming fetch operation from the
database. By leveraging the Redis cache, the system can
significantly improve response times and reduce the load on
the database, resulting in faster and more efficient data
retrieval.

Code for the Redis connection:

redis_client = redis.Redis(host='localhost', port=6379, db=0)

redis_client.set(body.decode(), json_data)

redis_client.expire(body.decode(), 5)

D. Result

Based on the provided information, the following results can
be inferred:

Flexibility in managing diverse data types: The
implementation of a microservices architecture allows for
the decomposition of the system into individual services,
enabling efficient handling and processing of specific data
formats. This result enhances flexibility in managing diverse
data types within the real-time database system.

Successful integration of text detection results using
RabbitMQ: By employing RabbitMQ as a message broker,
the system achieves seamless communication and data
transfer between components. This result ensures the
successful integration of text detection results into the

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 9

MongoDB database, facilitating the retrieval of associated
data.

Improved performance and reduced data latency through
Redis caching: The utilization of Redis as an in-memory data
store for caching retrieved data results in improved system
performance. This caching mechanism reduces data latency
by minimizing the need for repetitive fetch operations from
the database.

Enhanced efficiency and scalability in real-time data
processing: The combination of microservices architecture,
RabbitMQ message broker, and Redis caching contributes to
enhanced efficiency and scalability in real-time data
processing. This result leads to faster and more efficient data
retrieval, improving the overall performance of the system.

Overall, the achieved results demonstrate the successful
implementation of a flexible and efficient real-time data
processing system, leveraging the benefits of software
architecture, particularly microservices. This system
effectively manages diverse data types, enables seamless
integration between components, and significantly reduces
data latency, resulting in improved performance. By
adopting a microservices architecture, the system
decomposes into individual services that handle specific data
formats, enhancing flexibility and scalability in data
processing. The integration of a message broker, such as
RabbitMQ, ensures reliable communication and data
transfer, while an in-memory database like Redis optimizes
performance by caching retrieved data. Together, these
components and architectural choices contribute to the
system's overall success in achieving efficient real-time data
processing.

V. CONCLUSION AND FUTURE WORK

The objective of this survey is to offer valuable guidance to

researchers in the field of real-time data management using

software architecture. Our aim is to explore various

applications, advancements, and challenges in this domain,

providing insights into the methodology employed. By

conducting a comprehensive investigation, we seek to

contribute to the existing body of knowledge and assist

researchers in their exploration of real-time data

management. Flexibility in managing diverse data types:

The implementation of a microservices architecture allows

for the decomposition of the system into individual services,

enabling efficient handling and processing of specific data

formats. This result enhances flexibility in managing

diverse data types within the real-time database system.

Successful integration of text detection results using

RabbitMQ: By employing RabbitMQ as a message broker,

the system achieves seamless communication and data

transfer between components. This result ensures the

successful integration of text detection results into the

MongoDB database, facilitating the retrieval of associated

data.

Improved performance and reduced data latency through

Redis caching: The utilization of Redis as an in-memory

data store for caching retrieved data results in improved

system performance. This caching mechanism reduces data

latency by minimizing the need for repetitive fetch

operations from the database.

Enhanced efficiency and scalability in real-time data

processing: The combination of microservices architecture,

RabbitMQ message broker, and Redis caching contributes

to enhanced efficiency and scalability in real-time data

processing. This result leads to faster and more efficient

data retrieval, improving the overall performance of the

system.

Overall, the achieved results demonstrate the successful

implementation of a flexible and efficient real-time data

processing system, leveraging the benefits of software

architecture, particularly microservices. This system

effectively manages diverse data types, enables seamless

integration between components, and significantly reduces

data latency, resulting in improved performance.

In terms of future scope, several areas can be explored to

further enhance the system. These include scaling and

performance optimization to handle larger volumes of data,

incorporating real-time analytics and insights generation,

strengthening security and data privacy measures,

integrating with external systems or APIs, and

implementing continuous monitoring and error handling

mechanisms.

By addressing these future areas of development, the real-

time data processing system can continue to evolve and

meet the evolving needs of real-time data-driven

applications, providing even greater flexibility, scalability,

performance, and insights.

REFERENCES

1. “Adaptive Trust Management and Data Process Time Optimization for
Real-Time Spark Big Data Systems”,Seungwoo Seo; Jong-Moon

Chung,Published in: IEEE Access (Volume: 9),Date of Publication: 22

November 2021
2. Guarantee the Quality-of-Service of Control Transactions in Real-Time

Database Systems, Chenggang Deng; Guohui Li; Quan Zhou; Jianjun

Li,Published in: IEEE Access (Volume: 8),Date of Publication: 15 June
2020

3. M. Canizo, A. Conde, S. Charramendieta, R. Miñón, R. G. Cid-Fuentes,

and E. Onieva, ‘‘Implementation of a large-scale platform for cyber-
physical system real-time monitoring,’’ IEEE Access, vol. 7,pp. 52455–

52466, 2019.

4. T. Gustafsson and J. Hansson, ‘‘Data management in real-time systems:
A case of on-demand updates in vehicle control systems,’’ in Proc.

RTAS 10th IEEE Real-Time Embedded Technol. Appl. Symp., May

2004, pp. 182–191.
5. X. Shi, Y. Shen, Y. Wang, and L. Bai, ‘‘Differential-clustering

compression algorithm for real-time aerospace telemetry data,’’ IEEE

Access, vol. 6, pp. 57425–57433, 2018.
6. J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh,

‘‘Wireless sensor networks for healthcare,’’ Proc. IEEE, vol. 98, no. 11,

pp. 1947–1960, Nov. 2010.
7. S. Han, A. K. Mok, J. Meng, Y. H. Wei, P. C. Huang, Q. Leng, X. Zhu,

L. Sentis, K. S. Kim, and R. Miikkulainen, ‘‘Architecture of a

1 Volume 7- Issue 1, January 2024

2 Paper : 95

Enhancing Real-Time Data Management through Software Architecture Development Page 10

cyberphysical avatar,’’ in Proc. ACM/IEEE Int. Conf. Cyber-Phys. Syst.,

Philadelphia, PA, USA, Apr. 2013, pp. 189–198.
8. Data Lake Lambda Architecture for Smart Grids Big Data

Analytics,Amr A. Munshi; Yasser Abdel-Rady I. Mohamed,Published

in: IEEE Access (Volume: 6),Date of Publication: 23 July 2018
9. Software Architecture Degradation in Open Source Software: A

Systematic Literature Review,Ahmed Baabad; Hazura Binti Zulzalil;

Sa’adah Hassan; Salmi Binti Baharom,Published in: IEEE Access (
Volume: 8),Date of Publication: 18 September 2020

10. M. Sahlabadi, R. C. Muniyandi, Z. Shukur, and F. Qamar,

‘‘Lightweight software architecture evaluation for industry: A
comprehensive review,’’ Sensors, vol. 22, no. 3, p. 1252, Feb. 2022.

11. T. Yang, Z. Jiang, Y. Shang, and M. Norouzi, ‘‘Systematic review on

nextgeneration web-based software architecture clustering models,’’
Comput. Commun., vol. 167, pp. 63–74, Feb. 2021.

12. C. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S.

Crouch, E. Y. Nakagawa, C. Becker, and C. Carrillo, ‘‘Software
sustainability: Research and practice from a software architecture

viewpoint,’’ J. Syst. Softw., vol. 138, pp. 174–188, Apr. 2018.

13. W. Hasselbring, ‘‘Software architecture: Past, present, future,’’ in The
Essence of Software Engineering. Cham, Switzerland: Springer, 2018,

pp. 169–184.

14. P. Glikman and N. Glady, “What’s the value of your data?” (2015).
[Online]. Available: https://goo.gl/bFZKeR, Accessed on: 6-Dec.- 2016

15. G. M. Kapfhammer, “A comprehensive framework for testing

database-centric applications,” Ph.D. dissertation, Univ. Pittsburgh,
Pittsburgh, PA, USA, 2007.

16. PostgreSQL featured users. [Online]. Available: https://www.

postgresql.org/about/users/, Accessed on: 6-Dec.-2016
17. Well-known users of SQLite. [Online]. Available: https://www.

sqlite.org/famous.html, Accessed on: 10-Dec.-2016

18. K. Roukounaki, “Five popular databases for mobile.” (2014). [Online].
Available: https://goo.gl/rAUAe0, Accessed on: 6-Dec.- 2016

19. B. Butler, “Amazon: Our cloud powered Obama’s campaign,” Netw.

World, 2012.
20. Automatic Detection and Removal of Ineffective Mutants for the

Mutation Analysis of Relational Database Schemas,Phil McMinn; Chris

J. Wright; Colton J. McCurdy; Gregory M. Kapfhammer,Published in:
IEEE Transactions on Software Engineering (Volume: 45, Issue: 5, 01

May 2019),Date of Publication: 27 December 2017

21. M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E. Subagyo, and I. A.
Chandra,‘‘The comparison firebase realtime database and MySQL

database performance using Wilcoxon signed-rank test,’’ Procedia

Comput. Sci., vol. 157,pp. 396–405, Jan. 2019.
22. L. Bienvenu and R. Downey, ‘‘On low for speed oracles,’’ J. Comput.

Syst. Sci., vol. 108, pp. 49–63, Mar. 2020.
23. P. Senellart, L. Jachiet, S. Maniu, and Y. Ramusat, ‘‘ProvSQL:

Provenance and probability management in postgreSQL,’’ Proc. VLDB

Endowment, vol. 11, no. 12, pp. 2034–2037, Aug. 2018.
24. Performance Evaluation of IoT Data Management Using MongoDB

Versus MySQL Databases in Different Cloud Environments, Mahmoud

Moustafa Eyada; Walaa Saber; Mohammed M. El Genidy; Fathy

Amer,Published in: IEEE Access (Volume: 8) Date of Publication: 15

June 2020

25. Y.-S. Kang, I.-H. Park, J. Rhee, and Y.-H. Lee, ‘‘MongoDB-based
repository design for IoT-generated RFID/Sensor big data,’’ IEEE

Sensors J., vol. 16, no. 2, pp. 485–497, Jan. 2016.

26. B. Maity, S. Sen, and N. C. Debnath, ‘‘Retracted: Challenges of
implementing data warehouse in MongoDB environment,’’ J. Fundam.

Appl. Sci., vol. 10, no. 4S, pp. 222–228, 2018.

27. M. Kalske, N. Mäkitalo, and T. Mikkonen, ‘‘Challenges when moving
from monolith to microservice architecture,’’ in Current Trends in Web

Engineering (Lecture Notes in Computer Science), vol. 10544, I.

Garrigós and M. Wimmer, Eds. Cham, Switzerland: Springer, 2018, doi:
10.1007/978- 3-319-74433-9_3

28. J. Ghofrani and A. Bozorgmehr, ‘‘Migration to microservices: Barriers

and solutions,’’ in Applied Informatics, H. Florez, M. Leon, J. M. Diaz-
Nafria, and S. Belli, Eds. Cham, Switzerland: Springer, 2019, pp. 269–

281.

29. B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević, and I. Luković,
‘‘Development and evaluation of microbuilder: A model-driven tool for

the specification of rest microservice software architectures,’’ Enterprise

Inf. Syst., vol. 12, nos. 8–9, pp. 1034–1057, 2018.

30. O. Al-Debagy and P. Martinek, ‘‘A comparative review of

microservices and monolithic architectures,’’ in Proc. IEEE 18th Int.
Symp. Comput. Intell. Informat. (CINTI), Nov. 2018, pp. 149–154.

31. A. de Camargo, I. Salvadori, R. D. S. Mello, and F. Siqueira, ‘‘An

architecture to automate performance tests on microservices,’’ in Proc.
18th Int. Conf. Inf. Integr. Web-Based Appl. Services, Nov. 2016, pp.

422–429.

32. V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, ‘‘Does migrating
a monolithic system to microservices decrease the technical debt?’’ J.

Syst. Softw., vol. 169, Nov. 2020, Art. no. 110710.

33. A. Poniszewska-Marańda and E. Czechowska, ‘‘Kubernetes cluster for
automating software production environment,’’ Sensors, vol. 21, no. 5, p.

1901, 2021.

34. V. Lenarduzzi and O. Sievi-Korte, ‘‘On the negative impact of
teamindependence in microservices software development,’’ in Proc.

19th Int.Conf. Agile Softw. Develop., Companion, New York, NY, USA,

May 2018,pp.
35. F. Ramin, C. Matthies, and R. Teusner, ‘‘More than code:

Contributions in scrum software engineering teams,’’ in Proc.

IEEE/ACM 42nd Int. Conf. Softw. Eng. Workshops, New York, NY,
USA, Jun. 2020, pp. 137–140.

36. H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S.

Khan,‘‘A survey of distributed data stream processing frameworks,’’
IEEEAccess, vol. 7, pp. 154300–154316, 2019.

37. https://pretius.com/blog/benefits-of-microservices/

38. https://thenewstack.io/microservices/microservices-vs-monoliths-an-
operational-comparison/

39. https://www.simform.com/blog/monoliths-vs-microservices/

40. Performance Analysis of Not Only SQL Semi-Stream Join Using
MongoDB for Real-Time Data Warehousing,Erum Mehmood; Tayyaba

Anees,Published in: IEEE Access (Volume: 7),Date of Publication: 17

September 2019
41. https://learn.microsoft.com/en-

us/dotnet/architecture/microservices/multi-container-microservice-net-

applications/rabbitmq-event-bus-development-test-environment
42. https://cloudificationzone.com/2021/11/01/distributed-caching-with-

redis/

43. Guadalupe Ortiz; José Antonio Caravaca; Alfonso García-de-Prado;
Fràncisco Chavez de la O; Juan Boubeta-Puig “Real-Time Context-

Aware Microservice Architecture for Predictive Analytics and Smart

Decision-Making”,Published in: IEEE Access (Volume: 7) ,18
December2019,ISSN:2169-3536,Publisher: IEEE

44. Grzegorz Blinowski; Anna Ojdowska; Adam Przybyłek “Monolithic vs.

Microservice Architecture: A Performance and Scalability
Evaluation”,Published in: IEEE Access (Volume: 10),Date of

Publication: 18 February 2022 ,ISSN: 2169-3536,Publisher: IEEE

https://pretius.com/blog/benefits-of-microservices/
https://thenewstack.io/microservices/microservices-vs-monoliths-an-operational-comparison/
https://thenewstack.io/microservices/microservices-vs-monoliths-an-operational-comparison/
https://www.simform.com/blog/monoliths-vs-microservices/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/rabbitmq-event-bus-development-test-environment
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/rabbitmq-event-bus-development-test-environment
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/rabbitmq-event-bus-development-test-environment
https://cloudificationzone.com/2021/11/01/distributed-caching-with-redis/
https://cloudificationzone.com/2021/11/01/distributed-caching-with-redis/

