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Abstract— Different homomorphic encryption schemes are 

emerging as the new boom in the field of cryptography. It 

enables the user to perform computation on the encrypted 

text itself. The evolution of the homomorphic encryption 

scheme has not happened in one night, it took years of hard 

work by researchers. The paper studies various classical 

homomorphic encryption algorithms that served as a 

milestone in the journey of achieving a fully homomorphic 

encryption scheme. The chronological survey of classical 

homomorphic encryption is presented. A comparative 

analysis is done to analyze the homomorphic properties and 

ciphertext expansion ratio. A clear understanding of various 

classical homomorphic encryption with their algorithms is 

done and makes it easy for new researchers to understand the 

evolution of homomorphic encryption from the very first 

encryption algorithm, the RSA algorithm. It may help the 

latest researchers in the field of cryptography, to understand 

homomorphic encryption in-depth and its evolution.  

Keywords- Homomorphic Encryption, Data Encryption, RSA, 

GM, Cryptography Security, . 

I.  INTRODUCTION 

Cryptography is used as a technique for the secure 
transmission of data between two different parties, where 
the first party as a sender can encrypt the message and send 
it to the second party. On another end, the second party as a 
receiver receives the encrypts message and decrypts it to 
retrieve the original message [1]. In past few decades, a lot 
of research has been done in the field of cryptography for 
secure data transmission, storage, and computation. 
Researchers are successfully able to design various 
encryption algorithms for secure data transmission and 
storage. But performing secure computation over the data is 
still in the developing stage. 

The idea of querying over the encrypted text in a 
database gives rise to the concept of homomorphism. The 
first encryption algorithm, RSA in 1978 is secure while data 
is in the resting stage or transition stage. But when data is in 
use, then Homomorphic Encryption (HE) comes into the 
scene to secure the data by performing a set of computations 
over encrypted data and maintains the data privacy (hiding 
the actual content from the data user). 

II. CLASSICAL HOMOMORPHIC ENCRYPTION MODELS  

This section discussed some classical HE schemes, 
which have created a new interest area among researchers in 
the domain of cryptography. The first encryption scheme 
RSA in 1978 and then showed gradual improvements as 
other encryption standards come into existence. Following 
chronological order, this section summarizes all algorithms 
in detail, considering their important parameters and 
properties. 

A. Rivest-Shamir-Adleman Encryption Scheme  

RSA is an asymmetric Public Key Encryption (PKE) 

algorithm, presented by Ron Rivest, Adi Shamir, and 

Leonard Adleman in 1978. The RSA’s security rely on the 

problem of factoring large integers [2]. The large size of the 

keys makes it more secure but at the same time very slow on 

computation. The parameters used are modulus  , 

encryption exponent    and decryption exponent   are used 

in different sub-algorithms as given below: 

1) Key Generation (KeyGen):  

a) Select two large prime numbers,           and 

compute                               

b) Choose an integer            , such that 

           . 

c) Calculate the secret exponent,                
such that                  

d) The public and private key is       and      . 
2) Encryption (Encrypt):  

a) Get a public key         

b) Generate the cipher text   from plain text   using 

          
3) Decryption (Decrypt) 

a) Use private key       to get plain text   using 

           
RSA algorithm shows the multiplicative homomorphic 

property as shown below. Suppose there are two cipher 

texts,              for plaintexts           respectively, 

such as       
        and       

        therefore, 

            
            

       . 
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So, multiplicative property states,         
       

       . 

B. Goldwasser-Micali scheme (GM Scheme) 

GM scheme [3], encryption process is very as it uses 

only product and square mathematical operations, whereas 

decryption is more complex due to exponential operation 

and having complexity             where,      presents the 

number of bits in    Single bit input, and the ciphertext 

expansion are two major drawback of this scheme. As, a 

single bit of plaintext is encrypted in an integer modulo  , 

that is,      bits, i.e., encryption of 1 bit, generates 1024 bits 

long ciphertext [4]. The GM scheme is as follows: 

1) Key Generation (KeyGen):  

a) Select        , must be large prime numbers  

b) Calculate      . 

c) Choose an integer     
 

  
   to satisfy,  

 

 
  

 
 

 
     

d) As output receives,       and        as public and 

private key. 

2) Encryption (Encrypt):  

a) Choose plaintext        . 

b) Choose random   such that        

c) Compute cipher text  , such that   
             or we can say   

 
               

                    
  

3) Decryption (Decrypt): 

a) Compute  
 

 
   

b) Decrypt ciphertext to get plain text m such 

that 

   

      
 

 
   

             
 

 
    

  

The additive homomorphic property for 

ciphertexts                                         is:  

                   and                    , and 

                               

C. EL-Gamal’s Scheme 

A new signature scheme is proposed by Taher 

ElGamal in 1984. This scheme is also used to the Diffie-

Hellman (DH) key distribution method.  The calculating 

discrete logarithms over finite fields is the problem on 

which the security of the scheme lies. The author 

successfully achieve the same level of security as of RSA 

algorithm but the size of the public key is more and shows 

the multiplicative homomorphic property [5]. The scheme is 

explained as follows: 

1) Key Generation (KeyGen):  

a) Choose a large prime number,      

b) Choose   from a Group           such that,  

         

c) Choose    a primitive root as a generator in the 

Group            

d) Calculate            

e) The public and private keys are,         and    
2) Encryption (Encrypt):  

a) Choose plaintext        . 

b) Choose a random number  , from a Group    
       such that,           

c) Compute Ciphertext,     
        and    

             

3) Decryption (Decrypt): 

a) Decrypt ciphertext to get plain text m such that, 

        
            

D. Benaloh’s Scheme 

The author in the year 1994 [6], generalizes the GM 

scheme to manage inputs of      bits, where   is a prime 

number. Encryption works identical to the GM algorithm in 

which selection of an integer      and computing 

ciphertext,                 but the decryption is more 

complicated having less ciphertext expansion than GM 

algorithm. For input size      and output     , the 

ciphertext expansion is 
    

    
. This makes the scheme more 

efficient as encryption cost is almost similar to the GM 

scheme. For every decryption step, a constant overhead is 

there, i.e.,           . A smaller value    limits the 

expansion in the ciphertext. The scheme shows the additive 

homomorphic property. 

E. Naccache-Stern scheme 

This scheme [7] is an improved version of Benaloh’s 

scheme. To reduce the ciphertext expansion further, the 

author uses a greater value of a parameter   than Benaloh’s 

scheme. The scheme has reduced the cost of the decryption 

given by                   The ciphertext expansion value 

is 4, and can be further reduced by changing the selected 

parameters such as  . The scheme is partially additive 

homomorphic. 

F. Okamoto-Uchiyama scheme 

To improvise the performance the author changed the 

base group   such as      
  [8]. By taking   and   as 

large two prime numbers, calculate   i.e.,        and 

changed group  , help to reduce the expansion of 

ciphertext. The scheme is partial additive and its security 
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relies on the factorization of   against passive attacks. To 

make the scheme more secure against active attacks random 

oracle model can be used [9]. The scheme is more 

susceptible to a chosen-ciphertext attack and hence readily 

breaks the factorization problem. The scheme is considered 

suitable for EPOC systems as accepted by IEEE standard. 

G. Paillier Scheme 

It is one of the most well-known improved HE 

schemes as the author reduced the ciphertext expansion to 

its minimum value from 3 to 2, in comparison with other 

existing HE schemes [10]. As usual, the author uses p and q 

as two large prime numbers to calculate       with 

           . Group,      
   and parameter H selection, 

led to a value of       . The encryption cost is not high 

but the decryption process is more complex.  

The scheme is explained as follows: 

1) Key Generation (KeyGen):  

a) Take           as two large prime numbers. 

b) Calculate       and choose      . 

c) Calculate                 , where      is 

Euler’s Totient function. 

d) Calculate                

e) The public and secret keys are       and   

respectively. 

2) Encryption (Encrypt):  

a) Select plaintext       where      

b) Pick a random number    , such that          
 , where    

 . 

c) Calculate Ciphertext,               . 

3) Decryption (Decrypt): 

a) Ciphertext,        and decrypt it using the private 

key, to retrieve the plain text   such that, 

   
                

 
            

The Chinese Remainder Theorem (CRT) is used to 

manage the decryption process to make the scheme more 

efficient. Due to reduced, encryption costs and ciphertext 

expansion, the scheme gets more popular and great 

acceptance. This scheme is additive homomorphic i.e., 

                                    
 2     . 

H. Damgard - Jurik Scheme 

The author proposed the generalization for Pailliler’s 

scheme by using the group      
    
           larger 

the value of  , the lower will be the ciphertext expansion. 

The key generation algorithm is identical to the Paillier 

scheme [11]. To encrypt the plaintext      
     

The scheme is explained as follows: 

1) Key Generation (KeyGen):  

a) Select two large prime numbers,            

b) Calculate       and choose           
       

c)                      
d) Choose  , using the CRT, such as            

   

and          . 

e) The public key       and the private key is    
2) Encryption (Encrypt):  

a) Choose plaintext       where      
     

b) Choose a random number,     
      

. 

c)  Compute the ciphertext, 

       
 
                   

3) Decryption (Decrypt): 

a) Ciphertext,        and decrypt it using the private 

key, to obtain the plain text   such that, 

                 
The ciphertext expansion value can be computed by 

  
 

 
 , and it can be further reduced to 1, for a large value of 

   The scheme has less ciphertext expansion rate but has 

more computational overhead. The overall cost is more than 

Paillier’s scheme. It satisfies,             
                                 . 

I. Galbraith scheme 

The author presented an adaptive version of Paillier 

scheme in the milieu of elliptic curves over rings 
 

   
 for 

    [12]. Ciphertext expansion equals 3. For S=1, the 

ratio of encryption cost and decryption cost is  approx. to 7 

and 14 respectively. For bigger value of S, the cost of 

encryption and decryption may be reduced. The security of 

the scheme improves with the increase in value of S. 

J. Boneh-Goh-Nissim Scheme 

The author presented a new homomorphic PKE 

scheme in 2005 [13]. The scheme is based on finite groups 

of composite order that use a bilinear map. The scheme is 

explained as follows: 

1) Key Generation (KeyGen):  

a) Select two large prime numbers,            

b) Calculate       and generate a bilinear group,   

having order     

c) Choose two random generators   and   , such that 

       . 

d) Compute     
  , a random generator from a 

subgroup of     having order    

e) The public and secret keys are           and    
2) Encryption (Encrypt):  

a) Choose plaintext             where        
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b) Choose a random number,            . 

c)  Compute the ciphertext,            

3) Decryption (Decrypt): 

a) Decrypt the ciphertext using secret key,  , to get 

plain text   such that,                    
Finally, to compute  , find a discrete log of   , i.e.,  

            The security of the scheme relies on subgroup 

decisional problem. If        is an element from a group 

   of composite order then it is hard to find out from which 

subgroup has order   or  , it belongs. The author also shows 

the evaluation of the 2-DNF (Disjunctive Normal Form 

formula on ciphertexts [14] [15]. 

K. Castagnos’s scheme 

The author improved the performance of existing HE 

schemes, by proposing a new probabilistic encryption 

scheme using quadratic field quotations [16]. For the value 

of S=1, scheme achieves the ciphertext expansion and ratio 

of encryption/decryption as 3 and 2 respectively. The 

security of the system relies on the new decisional problem 

and LUC problem related to Lucas sequence [16]. The 

encryption cost is much smaller than the El-Gammal. The 

computational cost of the scheme is also reduced as the 

LUC sequence and LUC function help to perform the 

computation faster. The scheme is faster than the Galbraith 

scheme [12]. 

III. HISTORICAL EVOLUTION OF HOMOMORPHIC 

ENCRYPTION 

Privacy homomorphism i.e., the idea to perform 

computation over encrypted data was first introduced by 

Rivest, Shamir, and Adleman in their cryptographic 

algorithm, i.e., RSA which later turned into a concept of 

today, i.e., Homomorphic Encryption. The RSA’s security 

rely on the problem of factoring large integers. Due to the 

deterministic nature of the scheme, it is not much secure as 

generated ciphertext can easily be guessed for its respective 

plaintext, as always, the same ciphertext generates for the 

same plaintext. The multiplicative property of RSA is also 

not used in a real-life application and various improvements 

to the basic RSA algorithm also tend to lose its 

homomorphic property [17].  

The GM scheme by Goldwasser & Micali (1982) [3] is 

the idea of the RSA algorithm i.e., compute, modulo 

         a product of two large primes. The scheme's 

security relies on the intractable quadratic residuosity 

problem [15]. The algorithm's core premise is to partition a 

subset of integers modulo   into two secret parts          . 

Determining the subset and its partition is critical that can 

be done using group theory. The subset is the group G of 

invertible integers modulo   with a Jacobi symbol equal to 1 

with regard to n. With these parameter values, G may be 

divided into two parts: H and G\H. A new signature scheme 

is presented by Taher ElGamal in 1985 [5]. The scheme is 

an asymmetric encryption scheme having the same sized 

numbers and achieving the same level of security but the 

size of the public key is greater than RSA. The algorithm is 

partially multiplicative homomorphic encryption [5]. The 

scheme can be cracked up in sub-exponential time [14] due 

to its deterministic nature like RSA but still can be 

considered a hard problem [18]. 

The author, Benaloh in the year 1994 [6], generalizes 

the GM scheme to improve it in terms of ciphertext size. 

The scheme is probabilistic and additive homomorphic. The 

decryption algorithm is more complex and smaller 

ciphertext. For every decryption step, a constant overhead is 

there, i.e.,              In 1998, Naccache & Stern 

introduced another scheme to improve Benaloh’s scheme in 

terms of computational efficiency [7] and also reduce the 

ciphertext size by choosing a greater value of    than 

Benaloh’s scheme. The decryption algorithm is also 

modified to reduce the cost [7]. The scheme is partially 

additive homomorphic. In the same year, author improves 

the performance of the earlier PHE scheme by changing the 

group  , that helps to reduce the  expansion of ciphertext 

for the proposed scheme [8]. To make the scheme more 

secure against active attacks random oracle model can be 

used [9]. The scheme is partially additive homomorphic.  

In 1999, Paillier presented probabilistic PHE scheme, 

based on the concept of the GM scheme that was additive 

homomorphic [10]. With the change, Group,      
   and 

specified parameter selection, the author, achieves the least 

ciphertext expansion, and reduced encryption cost. It is one 

of the most popular and improved HE schemes. Decisional 

Composite Residuosity Assumption (DCRA) problem, 

makes the scheme secure. In 2001, Damgård and Jurik [11] 

presented the generality of Pailliler’s scheme by modifying 

the group. The scheme is more intensive in terms of 

computation but reduces the ciphertext expansion. The 

overall cost to execute the scheme is more than Paillier’s 

scheme. The scheme is additive homomorphic. In 2002, The 

author presented an adaptive version of Paillier scheme 

related to the elliptic curves over rings while preserving the 

homomorphic property of the scheme [12]. Overall cost can 

be decreased with improved security. Cramer and Shoup 

[19] presented another variant of the PHE scheme, based on 

Paillier’s scheme but stronger than that in 2002. With some 

specified algebraic properties, the scheme is more secure 

against adaptive chosen-ciphertext attacks. Specified 

parameter selection helps to reduce the public key and 

ciphertext size. 

In 2003, Bresson et al. [1] presented a somewhat 

modified version of Cramer Shoup's HE schemes that 

is additive homomorphic. Two separate decryption versions 
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based on two different trapdoors are given. The scheme is 

additive homomorphic and security does not rely on a 

factorization problem but instead on a residuosity-related 

assumption problem.  

Boneh et al. presented a new homomorphic PKE 

scheme in 2005 [13]. BGN scheme is somewhat 

homomorphic, as it shows additive homomorphic property 

and also supports only one multiplication operation on 

ciphertexts. It provides a foundation for the construction of 

Fully Homomorphic Encryption (FHE). The author also 

shows the evaluation of the 2-DNF formula on ciphertexts 

using, his scheme, popularly known as the BGN scheme, 

and ciphertext size also remains constant [14][15].  

Earlier in 1982 and 1999, two somewhat HE 

encryption schemes are introduced by Yao [20] and Sander 

et al. [21] respectively. Yao’s tried to compute operations 

over encrypted text using a circuit, later popularly known as 

Yao’s garbled circuit. The author proposed a solution to the 

‘Millionaires Problem’ where the wealth of two rich people 

can be compared without revealing another one. The 

proposed scheme is not much efficient as ciphertext shows 

linear growth with each computation and also has more 

computational overhead. The overall scheme is not favored 

due to its too much complexity [15]. Sander et al.  (SYY) 

[21], proposed an idea to evaluate operation over encrypted 

text but on a different set, i.e., a semigroup, NC1. NC1 

semigroup possesses fewer properties in comparison to a 

group and has poly-logarithmic depth and polynomial-sized 

circuits. The circuit is comprised of polynomially-many 

AND gates and one OR/NOT gate that improves the depth 

of the evaluation circuit. Ciphertext size grows 

exponentially with each operation. 

 In 2007, Ishai and Paskin (IP) [22] proposed another 

PKE scheme to evaluate the branching programs (binary 

decision programs with labels 0 or 1), over encrypted text 

for a limited length of the program. The details between the 

server and client are hidden, like the size of the input to the 

server from the client, i.e., the size of the branching 

program. The scheme is improved in terms of the number of 

computations and ciphertext size, also independent of the 

function or length of the branching program. In 2007, 

Kawachi et al. [23], presented a PHE scheme over a cyclic 

group. The scheme is additive homomorphic. The pseudo-

homomorphism is an algebraic condition that permits 

homomorphic operations on encrypted text and decryption 

results in original plaintext with a small decryption error. 

The scheme's security is dependent on the hardness of 

lattice problems [15].

 
Figure 1 Evolution of Classical Homomorphic Encryption Schemes 

IV. COMPARATIVE ANALYSIS AND RESULT 

Fig. 1 shows the evolution of classical homomorphic 

encryption schemes. In fact, researchers have been working 

on the problem of HE since 1978 starting with the RSA 

algorithm [2] but haven't got any scheme for a long time.  

Table 2.1 shows the analysis of various classical HE 

schemes.  

Table 2. 1 Analysis of Classical Homomorphic Encryption Schemes 

 

Year Scheme Additive Multiplicative 
Ciphertext 

Expansion 

Ratio 
1978  RSA ✖ ✔ 1 

1982  GM ✔ ✖         
1984 EL-Gamal  ✖ ✔ 2 

1994  Benaloh ✔ ✖                 

1998  
Naccache & 

Stern ✔ ✖                 

1998 
Okamoto & 
Uchiyama ✔ ✖ 3 

1999 Paillier  ✔ ✖ 2 

2001 
Damgard- 

Jurik  
✔ ✖       

          
    

2002 Galbraith  ✔ ✖ 3 

2005 BGN ✔ ✔                 

2007 Castagnos  ✔ ✖ 3 

It has been found that the author, Castagnos improved the 

performance of existing HE schemes, by proposing a new 

probabilistic encryption scheme using quadratic field 

quotations [16]. The security of the system relies on the 

new decisional problem and LUC problem. The scheme is 
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faster than the Galbraith scheme and performs computation 

faster. Melchor et al. [24], presented a new chained 

encryption scheme, i.e., a combination of BGN [13] and 

the Kawachi’s scheme [23]. As BGN supports unlimited 

additions and one multiplication and Kawachi’s scheme is 

additive, so the new combined scheme supports 

homomorphic unlimited additions and two multiplication 

evaluations up to a constant depth circuit. However, the 

ciphertext size increases exponentially for multiplication 

whereas remains constant for an addition operation 

[14][25]. 

V. CONCLUSION AND FUTURE SCOPE 

The paper presents the study of different classical 

homomorphic encryption schemes before Gentry’s fully 

homomorphic encryption scheme in 2009 which is given 

by researcher, Craig Gentry.  The Study shows that the 

various classical encryption schemes are either additive or 

multiplicative except for the BGN scheme which is 

somewhat homomorphic. This study may help the 

researchers to understand the history of homomorphic 

encryption schemes and their evolution to fully 

homomorphic encryption schemes. 
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